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Its like Deja-Vu all over again!
– Yogi Berra

You can observe a lot just by 
watching

– Same guy

The Future of post-exascale HPC is looking more like the 
past 30 years of High Performance Distributed Services/Networking
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My Past Foray into High Performance Distributed Computing
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SC95 I-WAY



• Then: StarTap (1997) followed by StarLIGHT and NetherLight and 
GLIF (2001) (working for Tom Defanti)
– Emerging Global Movement: Eighth Joint European Networking Conference 

(JENC8) Edinburgh Scotland in May, 1997 (Optical StarTAP)
– Optical Nets: State of art DWDM over fiber for massive bandwidth
– Lambda Grids / Lambda Fabrics: Circuit switching to provide end-to-end 

paths for distributed services (now production with ESNet OSCARS w/VLANs)
• Now: Resource Disaggregation and Serverless computing

– Seeing lambda grid concept emerging within rack & chip
– Miniaturized DWDM now within a 5x7mm silicon die! (smaller than a dime)
– Optical Circuit Switching and Lambda-steering within chip and rack

My Past Foray into High Performance Distributed Computing
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Diverse Node Configurations for Diverse Workload Resource Requirements
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Disaggregated Node/Rack Architecture

1
0

Most solutions current disaggregation solutions use Interconnect bandwidth (1 – 10 GB/s) 
But this is significantly inferior to RAM bandwidth (100 GB/s – 1 TB/s) 

Current server

Current rack

Disaggregated rack

Pool and compose



DWDM has moved inside of the chip!
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Attachment technologies

z Solder micobumps
~ Today typically 40 µm pitch 
~ 25 µm pitch demonstrated
~ Potential for 5 µm pitch

z Copper-copper
~ Copper-copper compression 

| @ high temperature (> 400 C)
~ Hybrid bonding

| @ low temperature (Ziptronix DBI)
~ Typical 2 – 5 µm pitch
~ Potential for sub-1 µm pitch

| Enabled by sub-1 µm alignment tools
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In-package integration

Solder Microbumps
& Copper Pillars@~10Gbps

Wide and Slow!

DWDM Using Silicon Photonics

Ring Resonators @ ~10-25 Gb/sec per chan
Many channels to get bandwidth density

Wide and Slow!

Comb Laser Sources

Single laser to efficiently 
generate 100s of frequencies

Wide and Slow!
And like with StarTap and TransLight and 

other DWDM Lambda-grids, that kind of BW 
it opens up so many new possibilities!
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Photonic MCM (Multi-Chip Module)
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Comb Laser Source with 
DWDM Silicon Photonics

Wide-and Slow for high speed links 
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Photonic MCM (Multi-Chip Module)
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High-Density fiber coupling array 
with 24 fibers = 6-12 Tb/s bi-
directional = 0.75 – 1.5 TB/s

ASIC Circuits
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Photonic 
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Emerging disaggregated datacenter architectures
• Its all about the data flow!
• Revisit network description languages for optical networks
• Role based control models for multi-domain apps
• Scalable workflows

• And Security!!!!



• Security
– Conventional Wisdom:  Boundaries of Linux server are the DMZ
– New World Order: what boundary?  What Linux Server?  

• Emerging Trusted Execution Environments (TEEs)
– Now all resources are distributed and must have a ”shared secret” to work 

together safely
– Trust-no-one… revocable credentials, differential security
– Solutions to security even within the rack of this new “disaggregated datacenter” 

are looking like the iWAY and Grid and modern wide area distributed services

• Emerging Technology looks a LOT like “déjà vu All Over Again

Other Consequences of Disaggregation
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Moore’s Law is Ending (really it is!)
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Hennessy / Patterson



The Future Direction for Post-Exascale Computing



Specialization: 
Natures way of Extracting More Performance in Resource Limited Environment
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Powerful General Purpose Many Lighter Weight
(post-Dennard scarcity)

Many Different Specialized
(Post-Moore Scarcity)

Xeon, Power KNL, AMD, Cavium/Marvell, GPU Apple, Google, Amazon



Algorithm Reformulated as Custom Circuit
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See Also Torsten Hoefler “StreamBLAS” for FPGA



• Doesn’t this look kind of familiar?
– Moving SaaS, FaaS, and *aaS towards workflows
– Wide area networking has at least 2 decades lead thinking 

through these complex issues of service orchestration!

From GSDL to WSDL to Workflows
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How do chiplets enable domain specialization?

2
2

Chips no longer monolithic

In a multi-vendor chiplet
marketplace how do you 

manage security when you 
can’t trust all of your chiplets ?



• The slowdown in Moores Law isdriving a new world order in datacenters!
– Disaggregation, extreme heterogeneity, serverless computing, break-down of security models

• Wide Area High Performance optical networks and Distributed Services 
architectures have had to grapple with these issues for decades before
– Lambda-switching/steering
– Workflow description and service orchestration
– Distributed “trust no-one” security and differential privacy models (inside chip!!!)
– *as –a-Service models (Accelerator as a Service for example)

• Cees and Leon could easily dominate next generation of 
computer architecture research just by drawing on their ample 
(30+ years) of accumulated knowledge of wide area distributed 
computing….  (another 30+ years of work ahead)

The future looks more like the past

23Its like déjà vu all over again –Yogi Berra



24



Figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith
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Projected Performance Development
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Projected Performance Development
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Why?   Domain specific Architectures driven by hyperscalers
in response to slowing of Moore’s Law (switch to systems focus for future scaling)
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COMPUTER SCIENCE

There’s plenty of room at the Top: What will drive
computer performance after Moore’s law?
Charles E. Leiserson, Neil C. Thompson*, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson,
Daniel Sanchez, Tao B. Schardl

BACKGROUND: Improvements in computing
power can claim a large share of the credit for
many of the things that we take for granted
in our modern lives: cellphones that are more
powerful than room-sized computers from
25 years ago, internet access for nearly half
the world, and drug discoveries enabled by
powerful supercomputers. Society has come
to rely on computers whose performance in-
creases exponentially over time.
Much of the improvement in computer per-

formance comes from decades of miniatur-
ization of computer components, a trend that
was foreseen by the Nobel Prize–winning phys-
icist Richard Feynman in his 1959 address,
“There’s Plenty of Room at the Bottom,” to
the American Physical Society. In 1975, Intel
founder Gordon Moore predicted the regu-
larity of this miniaturization trend, now called
Moore’s law, which, until recently, doubled the
number of transistors on computer chips every
2 years.
Unfortunately, semiconductorminiaturiza-

tion is running out of steam as a viable way
to grow computer performance—there isn’t
much more room at the “Bottom.” If growth

in computing power stalls, practically all in-
dustries will face challenges to their produc-
tivity. Nevertheless, opportunities for growth
in computing performance will still be avail-
able, especially at the “Top” of the computing-
technology stack: software, algorithms, and
hardware architecture.

ADVANCES: Software can be made more effi-
cient by performance engineering: restructur-
ing software to make it run faster. Performance
engineering can remove inefficiencies in pro-
grams, known as software bloat, arising from
traditional software-development strategies
that aim to minimize an application’s devel-
opment time rather than the time it takes to
run. Performance engineering can also tailor
software to the hardware on which it runs,
for example, to take advantage of parallel pro-
cessors and vector units.
Algorithms offer more-efficient ways to solve

problems. Indeed, since the late 1970s, the time
to solve the maximum-flow problem improved
nearly as much from algorithmic advances
as from hardware speedups. But progress on
a given algorithmic problem occurs unevenly

and sporadically and must ultimately face di-
minishing returns. As such, we see the big-
gest benefits coming from algorithms for new
problem domains (e.g., machine learning) and
from developing new theoretical machine
models that better reflect emerging hardware.

Hardwarearchitectures
can be streamlined—for
instance, through proces-
sor simplification, where
a complex processing core
is replaced with a simpler
core that requires fewer

transistors. The freed-up transistor budget can
then be redeployed in otherways—for example,
by increasing the number of processor cores
running in parallel, which can lead to large
efficiency gains for problems that can exploit
parallelism. Another form of streamlining is
domain specialization, where hardware is cus-
tomized for a particular application domain.
This type of specialization jettisons processor
functionality that is not needed for the domain.
It can also allow more customization to the
specific characteristics of the domain, for in-
stance, by decreasing floating-point precision
for machine-learning applications.
In the post-Moore era, performance im-

provements from software, algorithms, and
hardware architecture will increasingly re-
quire concurrent changes across other levels
of the stack. These changes will be easier to im-
plement, from engineering-management and
economic points of view, if they occur within
big system components: reusable softwarewith
typically more than a million lines of code or
hardware of comparable complexity. When a
single organization or company controls a big
component, modularity can be more easily re-
engineered to obtain performance gains. More-
over, costs and benefits can be pooled so that
important but costly changes in one part of
the big component can be justified by benefits
elsewhere in the same component.

OUTLOOK: Asminiaturizationwanes, the silicon-
fabrication improvements at the Bottom will
no longer provide the predictable, broad-based
gains in computer performance that society has
enjoyed for more than 50 years. Software per-
formance engineering, development of algo-
rithms, and hardware streamlining at the
Top can continue to make computer applica-
tions faster in the post-Moore era. Unlike the
historical gains at the Bottom, however, gains
at the Top will be opportunistic, uneven, and
sporadic. Moreover, they will be subject to
diminishing returns as specific computations
become better explored.▪
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Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the “Top” of the computing stack, not from those at the “Bottom”,
reversing the historical trend.C
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Figure 19.  Hardware Reinvigoration.  Source: Cliff Young, Google Research [11] 
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Figure 20.  Integration with a Transistor Focus [11] 
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Attack of the Killer Micros
• Was more about the economic 

model than technology alone

29

John Markoff, May 6, 1991

• High End Systems (>$1M) 
• Most/all Top 500 systems
• Custom SW & ISV apps
• Technology risk takers & early adoptersIDC:

2005: $2.1B
2010: $2.5BCa
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• Volume Market
• Mainly capacity; <~150 nodes
• Mostly clusters; >50% & growing
• Higher % of ISV apps
• Fast growth from commercial HPC; 

Oil &Gas, Financial services, 
Pharma, Aerospace, etc.

IDC:
2005:   $7.1B
2010: $11.7B

Total market >$10.0B in 2006
Forecast >$15.5B in 20119.6%$3.4B$2.2B0-$50K

10.7%$4.9B$2.9B$50K-$250K
11.8%$3.4B$1.9B$250K-$1M

CAGR20102005IDC Segment 
System Size

HPC is built with of pyramid investment model
1



It is not good enough anymore to understand the technology
Now we must also understand the market context

30

Dan Reed, 2022
https://arxiv.org/pdf/2203.02544.pdf

• High End Systems (>$1M) 
• Most/all Top 500 systems
• Custom SW & ISV apps
• Technology risk takers & early adoptersIDC:

2005: $2.1B
2010: $2.5BCa
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• Volume Market
• Mainly capacity; <~150 nodes
• Mostly clusters; >50% & growing
• Higher % of ISV apps
• Fast growth from commercial HPC; 

Oil &Gas, Financial services, 
Pharma, Aerospace, etc.

IDC:
2005:   $7.1B
2010: $11.7B

Total market >$10.0B in 2006
Forecast >$15.5B in 20119.6%$3.4B$2.2B0-$50K

10.7%$4.9B$2.9B$50K-$250K
11.8%$3.4B$1.9B$250K-$1M

CAGR20102005IDC Segment 
System Size

HPC is built with of pyramid investment model
1

https://arxiv.org/pdf/2203.02544.pdf


Opportunity for HPC: New Economic Model

31

Open Chiplets Marketplace is forming (ODSA and UCIexpress)
– Licensable IP and assembly by 3rd party lowers that barrier
– Leverage the economic model being created by HyperScale

Leverage this baseline and extend to support HPC
– Smaller incremental cost for HPC to “play”
– HPC has become “too small to attack the city”

80:20 Rule: Focus open efforts on what uniquely benefits HPC
– Build up a library of reusable accelerators for HPC.
– Interoperability for sustainability: Interoperate with Arm IP 

for commercially supported IP where it exists and focus Open 
on the 20% that doesn’t make commercial sense to license

• High End Systems (>$1M) 
• Most/all Top 500 systems
• Custom SW & ISV apps
• Technology risk takers & early adoptersIDC:

2005: $2.1B
2010: $2.5BCa
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• Volume Market
• Mainly capacity; <~150 nodes
• Mostly clusters; >50% & growing
• Higher % of ISV apps
• Fast growth from commercial HPC; 

Oil &Gas, Financial services, 
Pharma, Aerospace, etc.

IDC:
2005:   $7.1B
2010: $11.7B

Total market >$10.0B in 2006
Forecast >$15.5B in 20119.6%$3.4B$2.2B0-$50K

10.7%$4.9B$2.9B$50K-$250K
11.8%$3.4B$1.9B$250K-$1M

CAGR20102005IDC Segment 
System Size

HPC is built with of pyramid investment model
1 Mark Seager 2010

memctl

memctl
MemoryDRAM

MemoryDRAM PC
Ie

FLASH
 

ctl

IB or 
G

igE

IB or 
G

igE



Package Performance is Pin Limited

32
23© 2017 Paul D. Franzon

The Bandwidth Gap

Source: Poulton, NVidea

Source: J. Poulton, Nvidia

High SERDES rates run
counter to end of 
Dennard Scaling



Datacenters: Worsten climate change without ultra-energy-efficiency
And data movement dominates that power consumption

• January 2021 SRC report projects datacenter energy growth rates will lead to 
~25% consumption of planetary energy by 2040.

• Data movement is a dominant contributor to that power consumption

33

Source: Gordon Keeler (DARPA) 4

PIPES:  Photonics in the Package for Extreme Scalability
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I/O power exceeds 300 W

What’s the problem?  I/O bandwidth & power limits

highest-performance CPU, FPGA, GPU, ASIC

NVIDIA Tesla V100
GPU accelerator

5120 cores
125 teraflops, 300 W, $5K

in-package

NVIDIA DGX-2
Enterprise AI

16 GPUs
2 petaflops, 10 kW, $400K

board-level

IBM Summit
Top supercomputer
36,864 GPUs & CPUs

200 petaflops, 13 MW, $300M

system-level

Images courtesy of 
NVIDIA and IBM
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Attacking the data movement bottleneck across microelectronics applications


