Trust-based collaborative

defences 1n multi network

alliances

Ralph Koning
System and Network Engineering Lab
University of Amsterdam
Amsterdam, The Netherlands
r.koning @uva.nl

Cees de Laat
System and Network Engineering Lab
University of Amsterdam
Amsterdam, The Netherlands
delaat@uva.nl

Abstract—Collaborative defences against, for example, Dis-
tributed Denial of Service attacks require trust between the
collaborators. Even in a trusted alliance of collaborators, some
members are more trusted than others with the execution of
a specific task. This paper shows that trust can be used as a
criterion in collaborative defences against attacks on computer
infrastructures. We evaluate the implementation of a trust based
defence in an overlay network and compare its’ performance to
other collaborative defences in the same environment. Results
show that the trust-based defence has comparable results to the
other collaborative defences after the trust values converge to
reflect the behaviour of the nodes.

Index Terms—Security, Trust, Multi-Domain Defence, Collab-
orative Defence, Computer Networks, Risk

1. INTRODUCTION

Distributed attacks on computer infrastructures, such as
Distributed Denial of Service (DDoS) attacks, disrupt widely
used internet services on a regular basis [1]. Since the victim is
attacked by a multitude of sources, the attack is often hard to
defend because the attack-power already accumulated before
reaching resources under control of the victim. Collaboration
with upstream providers and transit networks can increase
defence changes because they usually have more capacity and
resources available to deal with such attack-power. Collabo-
rations can be organised using alliances, in which members
agree to a common set of rules to establish a base of trust [2].
Yet, even with an alliance in place, based on the ability, the
willingness to help, and experience, some members will be
trusted more than others. This trust differs per member and is
based on the members’ experience and its collected evidence
about the member in question.

In [3], Koning et al. show that the efficiency of collaborative
defences, even when applying the same task, can differ based
on the approach and order in which the collaborators are asked
for help. Since asking help from more trusted members may
yield better results in defending, we ask ourselves: If we have

978-1-7281-3949-4/19/$31.00 ©2019 IEEE

System and Network Engineering Lab
University of Amsterdam
Amsterdam, The Netherlands

Ameneh Deljoo Lydia Meijer
TNO
Groningen, The Netherlands
L.l.meijer @tno.nl

a.deljoo@uva.nl

Paola Grosso
System and Network Engineering Lab
University of Amsterdam
Amsterdam, The Netherlands
p-grosso@uva.nl

an indicator of trust, can this be used in ally selection and
how does trust affect the efficiency of collaborative defences?
The objective of this research is to implement and evaluate
a collaborative defence strategy that uses the Social Com-
putational Trust Model (SCTM) [4]. First, we describe the
background and the context of this work in Sec. II. Then,
we briefly introduce the SCTM model and the parts of the
model that are used in this work in Sec. IIIl. We continue by
explaining the implementation of the trust based defence and
its prerequisites in Sections IV and V. In Sec. VI we explain
how we evaluate the trust based defence and in Sec. VII we
compare the results of the trust-based defence approach to the
results of the defence approaches defined in [3]. Finally, we
discuss the outcomes of this work in Sec. VIII, compare our
work to other research in Sec. IX and conclude in Sec. X.

II. MULTI-DOMAIN SARNET

SARNET is a framework for detection and autonomous mit-
igation of attacks on computer infrastructures. When multiple
defences are available for the situation the SARNET picks the
defence with the highest efficiency ranking and executes it.
A defence consists of multiple fasks. These tasks can be per-
formed by the domain itself, or be delegated to collaborators.
Collaborative defences require each participating domain to
run its own SARNET agent. The agents are responsible for
coordinating activities between collaborators in the alliance.
These activities include coordinated response to threats as well
as sharing information such as threat intelligence or analytic
data with agents of other domains.

In multi domain defences we distinguish four categories of
requests.

« Simple informational requests: Requests that can be an-
swered directly based on the knowledge of the requested
member.

o Complex informational requests: 1) Request for informa-
tion that is provided over time at the discretion of the

requested member i.e. subscribing to an information ser-
vice 2) Information that is collected (from other sources
or members) and transformed by the requested member.

« Simple actionable requests: The decisions and actions are
driven by the requester. Simple actionable requests are are
executed directly by the requested member according to
the requester specification.

« Complex actionable requests: The decisions and actions
are driven by the requested party. 1) Automatic mitigation
services allow the requested member to apply certain
countermeasures at their discretion at some point in the
future. 2) Delegated actions allow the requested mem-
ber to further handle the orchestration the multi-domain
defence.

Both types of simple requests consist of actionable tasks or
queries and the performance can easily be verified. For an
actionable task one can measure if the desired effect took
place and the informational query is shortly followed up with
a response. Complex requests often consist of multiple sub-
tasks, or queries to other members. These tasks usually take
longer to complete or give multiple replies over an extended
time period. The quality of the responses depends on the
amount of effort the requested domain is willing to spend
on the analysis, execution, or processing. Therefore, it is
important that the remote domain acts in the interest of the
requester.

We implement SARNET on top of VNET which provides an
experimental platform for secure networking research [3, 5].

A. attack scenario

Using VNET we can construct a virtual infrastructure by
supplying a topology, (Fig. 1), that uses virtual machines
which represent the following domains:

e a service domain (V) contains a web service that resem-
bles a market place where clients make purchases;

e a transit domain (51-58) forwards traffic, it provides
basic blocking, redirection and rate limiting functions;

o a client domain (12-18) interacts with the service domain
by making transactions with the service domain;

e a NFV domain (61) provides a set of network functions
(using Network Function Virtualisation, NFV) that can be
used for further analysis such as an Intrusion Detection
System or a honeypot or can be used as a countermeasure
such as a traffic scrubbing NFV.

The services within the domains are provided using con-
tainers connected using a software switch.

Traffic flows back and forth from the client domains via
the transit domains between the service domain. Normally, the
traffic consists of transactions (simulated purchases) sent to the
service domain. When we start an attack we instruct one or
more client domains to attack the victim which is the service
domain. The attacks consist of UDP based (Distributed) Denial
of Service attacks initiated from one or more client domains
(12—-18) that congests the link between the victim (V) and its
upstream provider transit domain (51). The defence consists of

D O

L]
o~

51 52 53 54

58 57 56 55

© ®
Figure 1: The network topology used in the experiments, V

is the victim, 12—18 are attackers, 51-58 map to transit51-58
and are transit domains, 61 is nfv61 the NFV domain.

filtering out this traffic pattern at the members of the alliance.
The alliance consists of all the transit domains, the service
domain and the NFV domain and excludes the client domains.

III. TRUST IN SECURITY ALLIANCES

Trust is considered as one of the success factors for al-
liances [6]. To form a security alliance, trust among the
members needs to be organised, maintained and measured.
Deljoo et al. [4] define trust in the alliance as follows: “a
trustor expects a trustee to perform task ¢ and the trustee will
not exploit vulnerabilities of the trustor when the trustee is

faced with the opportunity to do so." Therefore, every trustee:

« Has an ability to perform task ¢ (competence),

« Fulfills the commitments towards the trustor (integrity),
and

o Acts towards the trustor interest (benevolence).

In order to organise, maintain, and measure trust among the
members, we propose to use the social computational trust
model (SCTM) developed by [7]. The SCTM model evaluates
the trust of a trustee based on the three distinctive factors,
benevolence, competence and integrity; this work assumes
that integrity is provided, automatically and fully, by being
member of the alliance. Therefore, this work does not include
the computation of integrity.

A. Notation

Let us denote alliances members as A where [,r € A.
The interaction history is stored in the evidence knowledge
base Ekyp, and is called evidence. We assign three different
values to the evidence using function val(E): 1, when FD
(fulfilled), .5 when FDD (fulfilled with delay), and 0, when V
(not fulfilled). The E,; function obtains direct evidence from
the Exy,. The Ej, () function extracts indirect evidence from
all EK”W,T for task ¢t where nbr are the neighbours of 7. In
this paper we initialise the knowledge base, for the topology
in Fig. 1, using the values in Table III.

B. Benevolence

Benevolence is considered as one of the key trust compo-
nents and the antecedent of trustworthiness (e.g. [8, 9]). The
benevolence value is derived from the mutual interaction be-
tween a trustor and a trustee. According to [7] the benevolence
of trustee r towards trustor [is computed by:

> (wal(Ea(l,7; Exy,))), (1)

l,reA

1
Ben(l,r) = 5]

where NN is the number of entries in Exy, with the defined
value, in which [has interacted with r.

C. Competence

Competence refers to the ability of the trustee to perform
the task. We assume that [and r have not collaborated before;
therefore, the trustor needs to request the evidence form the
trustees’ direct neighbours (7,,-). The competence of node r
as the trustee is given by:

1
m IZEA(UGZ(Ein(t)(rnbm L EKb"'nbr)))7
2)

where |r,p,-| is the number of neighbours who respond to the
request of r. The benevolence and competence function return
a value between [0,1].

Comp(l,r,t) =

D. Risk

Every collaboration comes with a risk that needs to be
minimised. Das et al, [6] defined the relational and per-
formance risks as two distinct risks for the alliance, and
Deljoo et al. [4] present the risk evaluation framework for
the security alliance. Relational risk concerns the behaviour of
the alliance members, 1 — Ben(l,r), while the performance
risk considers the competence of members to perform the
given task, 1—Comp(l,r,t). Performance risk also guarantees
the service delivery through the collaboration. The risk is
calculated using an updated version of the equation defined
in [4], Section VI:

Ri(l,r,t) = a(l—Ben(l,r)+ (1 —a)(1—Comp(l,r,t)) (3)

In Sec. II we mention that for complex messages it is important
that the requested domain acts in the interest of the requester
i.e. have a low relational risk. When the relational risk is
considered more important « (a value between [0, 1]) can be
set to be higher than the default value of .5.

I'V. TRUST BASED DEFENCE PREREQUISITES

To implement trust based defences we need to extend the
existing SARNET agents. Since the trust is based on the time
it takes for an ally to perform an action we need a message
tracking mechanism. In Sec. IV-A we explain how we use this
tracking mechanism to gather the evidence required for the
trust computation. In Sec. IV-B we show how we compute the
trust values that are used in the trust based defence algorithm
in Sec. V.

A. Message tracker

Since the building of evidence is based on fulfilling requests
within a time period, we need to implement a method of
time tracking the messages. VNET uses an asynchronous
programming model; sending and responding is handled using
different code and the response handler has no information on
what is being sent. For time tracking to work, we need to
map the response back to the request. Therefore, we modified
the original message format to include a message ID and
a transaction ID which we also store upon sending. The
recipient can now reply with the message ID included such
that the sender can look up the corresponding request its track
database. Table 1 shows the format of entries in the track
database.

To each message sent we expect two replies: 1) an acknowl-
edgement that the message is received, and 2) a message that
the task is completed, each reply includes the message ID.
When data is requested from the recipient, the recipient returns
the data in a third message that includes the transaction ID.

When the acknowledgement or the task completed messages
are received by the sender the sender will set _repl in case of
an acknowledgement, and 7_done when the task is completed.

Periodically', we prune the track database. We convert
the completed and expired transactions in track database to
evidence and store them in the evidence knowledge base
(evdb). When ¢ _done is set for this request we store the
difference between t_req and t_done in the evdb. When ¢_done
is not set and the difference between z_req and the current time
exceeds the timeout, the request did not complete in time and
we store 0 in the evdb.

The track database only contains messages that are ’in
flight’, when no messages are exchanged and the timeout has
expired the database should be empty.

[meia | msg [type [local | remote | t_req | t_repl | t_done]

Table I: Track database entry format: we store the id of the
message, the complete message, the message type, local and
remote agent identifiers, the time when the request is made
request, and the times on which we receive the acknowledge-
ment (t_repl), and task done notifications (t_done).

B. Trust computation

When computing trust, risk or any of their components we
consult the evdb. The format is described in Table II. We store
the task itself, the trustor (source), the trustee(destination), the
time that has elapsed to complete the request, the request id
and the time when the message is recorded. When the trust
values are requested we use the logic in Algorithm 1 from [4]
to convert the elapsed times to evidence.

Benevolence is based on all the fulfilled evidence in the
evdb. To compute benevolence, we requires the name of the
remote agent. When provided with the optional argument time

IThe function should be called approximately every second but the timing
can vary due to other periodic functions being executed in the same thread.

benevolence only obtains the evidence from the evdb that is
produced after that time. When the evidence is obtained we
calculate benevolence according to Eq. (1). If the benevolence
computation fails the benevolence implementation returns
’None’

Competence depends on acquired data from all the neigh-
bours of the target. Computing competence requires the task
and the target and, like benevolence, the function returns
’None’ when the value cannot be computed. To acquire
the data from member domains, competence relies on the
following (simple informational) requests:

o Trust Request: Requests information for some trust com-
ponent. For competence the request must also contain the
task in question.

« Trust Response: Responds to the trust request by provid-
ing the requested part of the evdb.

When the relevant evidence is acquired, we compute the
competence according to Eq. (2). Acquiring competence is
an expensive operation, the requester has to block until all the
neighbours of the target reply with their evidence. A neighbour
can take some time to reply because the request has to be sent
out on the network, a relatively slow medium, and is subject to
delays, and round trip times. Since competence can be called
for multiple times per second and the reply is not instant,
the long running requests will be sent out multiple times per
second, consuming resources and congesting the network. To
prevent congestion from happening, we cache the result from
competence for 5 seconds. Every subsequent request is now
answered from the cache until the cache is cleared in which
case the request goes on the network to get updated values.
Caching does introduce a trade-off between accurate data and
performance but it is necessary to prevent excessive resource
use. For the caching to be effective, we recommended to keep
the time interval to clear the cache, which is in our case
5 seconds, larger than the response time (in our case < 1
second).

Risk is provided by taking the benevolence and accumulated
competence values and computing them according to Eq. (3).
If the value cannot be computed, the function returns 'None’.
Since the tasks that are executed only consists of the simple
request types (See Sec. II) we do not prioritise relational risk
over performance risk. Therefore, we calculate risk using: o =
..

[task | source [destination [elapsed [id | time]

Table II: Evidence knowledge base entry format: A single
entry stores the task (in our case message type), the source
and destination agent, the elapsed time of the request (O if the
task never completed), the id of the message and the time that
the evidence is gathered.

V. RISK BASED DEFENCE IMPLEMENTATION

Algorithm 1 shows how we implemented the risk based ap-
proach. The algorithm has to distinguishable phases: 1) Lines
1-6. When the defence starts we first collect the necessary

Algorithm 1: Risk based algorithm
Input: pattern: attack pattern
alliance: alliance members
time: wait time

1 for n € alliance do

2 Risk,, < gather_risks(task, n);

3 Benevolence,, < gather_benevolence(n);

4 Random,, < random();

5 end

6 ranked < sort N on Risk, 1 — Benevolence, and
Random;

7 for node € ranked do

8 if attack not resolved then

9 ask node for its neighbours that produce

pattern;

10 deploy countermeasure at node;

11 wait for time seconds;

12 end

13 end

values, risk, benevolence, and random to rank the nodes. Once
these values are collected, they will not be updated as long as
the defence is active. For defending, we are interested in the
nodes that have the lowest risk and, when the risks are equal,
the node with the highest benevolence. Therefore, we sort the
nodes firstly on their risk, and secondly on their benevolence.
To break ties when two nodes have equal risk and benevolence,
we assign a third ranking value to a random and unique
number. In our experiments we seed the random number
generator in order to achieve consistent results. 2) Lines 7—
13. When the trust information is gathered and the ranking is
complete, the actual defending starts. The top ranked domain
is asked whether it detects the traffic and to deploy a defence
when this is the case. To each queried member it will exchange
the following messages:

o Ask: Asks a member whether it has seen traffic according
to a certain pattern and from which of its neighbours the
traffic originates.

« Match: The response to the ask message containing the
responding domain’s neighbours on which the pattern is
seen.

« Deploy: Deploys a filtering action on the specified traffic
pattern towards one of a members neighbouring domains.

Ask is considered a simple informational request and deploy
a simple actionable request

VI. EVALUATION

First, we need to verify whether the trust collection and
the algorithm behave as expected. To achieve this, we attack
the victim using same attack multiple times and between each
time we make sure that the network returns to a normal state.
After receiving the attack and implementing defensive actions,
the victim should have more evidence available and the trust
numbers should allow the victim be able to make a better

decision. To validate, we first we set the initial evidence such
that it mismatches the behaviour of the nodes; this mismatch
should immediately result in unfulfilled tasks in the evidence
database and in turn change the ranking for the next defence.
In Table III we list how we initialise the network. We give a
preference to transit51 by initialising with two extra fulfilled
(FD) transactions. We demote the use of nfv61 by adding two
extra violated (V) transactions.

=]

node FDD
transit51
transit52
transit53
transit54
transit55
transit56
transit57
transit58
nfvol

[N I N e S S e
N e N e e e e e e]

U [UREY (N JUREN VRN (U VRN |G (U

Table III: Initial evidence in the evdb: amount of fulfilled (FD),
fulfilled with delay (FDD) and violated (V) of the members
participating in the alliance.

We set members to behave differently from the initialisation
(see Table 1V). Transit51 who should be initialised as more
trustworthy is given a low success rate, which should result in
to violations when being asked. We also vary the success rate
of the others.

This means we expect two important things to happen: 1)
In the first attempt to defend transit51 is considered very trust-
worthy and gets selected. During that attempt it will generate
many violations (V). Therefore we expect that transit51 should
move down to the bottom. 2) transit52 has a high success rate,
resulting in fulfilled messages (FD) eventually, because it has
the highest success rate it should end on top. The other nodes
are expected to converge to the behaviour respective to their
number.

node success rate
transit51 | 0.0000001
transit52 | 1.0

transit53 | 0.8

transit54 | 0.6

transit55 | 0.4

transit56 | 0.2

transit57 | 0.1

transit58 | 0.0000001
nfv6l 1.0

Table IV: Member behaviour for our experiments, lists the
probability of successfully executing a task for all the members
in the alliance.

We will now execute the attack 10 times and display how
the ranking changes: Second, we need to see the effect of the
ranking on the efficiency.

Finally, we compare the efficiency of this approach to the
efficiency of three original approaches we evaluated before in

[3]:

o Approach 1 - Counteract Everywhere; places a defence on
every ally that sees attack traffic starting near the victim
and working its way to the attackers.

o Approach 2 - Minimise Countermeasures; first discovers
where the attackers are located by recursively asking the
allies from where it originates and defend it close to the
attackers at the border.

« Approach 3 - Minimise Propagation; similar to Approach
1, this approach places a defence starting at the ally
closest to the victim. Only this time we wait for a time
period to notice the effect. When still under attack it
continues.

VII. RESULTS

The topology used for the experiments is listed in Fig. 1. We
use the same four scenarios as in [3] to compare the results;
each scenario portrays distinct attack conditions:

o single attacker near, with the attacker in position 12;

o single attacker far, with the attacker in position 18;

o two attackers (1 far, 1 close), one far and one close,

respectively at 18 and 12;
e all clients attacking, all clients attack;

single attacker far

; \
, \

P X
/

two attackers 1 foo far 1 close

single attacker close

ranking

host
® tansits4
transit52

all clients attacking V'ar;usS
nve
transit57
transit56
transit58

eceoe
@

attempt

attempt

Figure 2: Changes of node ranking after defending x times, 1
is the highest rank and gets selected as member to defend.

Fig. 2 shows how the ranking of each node evolves over
time while learning the member behaviour. The rankings are
snapshots of a single run; they are not averaged. Each line
represents a member; we take snapshots of the ranking at the
moment the defence is created. As expected, the first attempt
ranks the members according to the initialisation. For the
subsequent attempts the ranking changes until it converged
to the set member behaviour and stabilises as expected.

Fig. 3 shows the efficiency [10] over runs. Each data point is
an average over three runs, the error bars contain the standard

deviation from the mean. There is not much variation between
the runs, so the error bars in the plots are small and mostly
unnoticeable. It is clearly visible that on the first run, when
transit51 is ranked high (see Table III, efficiency is lower than
in the consecutive runs. Also in all cases the efficiency seems
to increase and stabilise over time. The variations after the
stabilisation can be explained because we are working with
probabilities driven by random numbers that change over time.

single attacker far single attacker close

08 e 0 0 o ° 0 00000000
[] [°
.. 06
o
j =
Q0
o
E 04
(o]
0.2
°
two attackers 1 foo far 1 close all clients attacking A'Q:”‘hz‘
0.8
ee oo o e®0 000000
506 o0 °
c
Q0
(%)
£o04
(9]
0.2
i °
01234567289 012345867829
attempt attempt

Figure 3: Changes in efficiency after defending = times

Fig. 4 shows the trust-based approach we discussed in this
paper in comparison to the approaches we studied in [3].
On the z axis attempt indicates the defence attempt using
the same evdb. The different colours or symbols indicate the
different approaches. The trust based approach is indicated as
Approach 4.

In Figs. 4 and 5 we compare the approaches under two
different budget constraints: high (unlimited) budget, and low
budget. With a budget of 900, the victim can ask all the
members of the alliance to defend: 9 members each member
charging 100 credits. With a budget of 300 (Fig. 5) the victim
can, therefore, only ask 3 members each defence.

When the budget is large enough to ask all the members
(Fig. 4), the ranking can converge well. For the first attempt
trust based approach is less efficient than the other approaches,
but from the second attempt the graphs show no considerable
efficiency difference from the top approaches, in the single
attacker far and the all clients attacking approach the trust
based approach is more efficient than the others.

In the constrained budget approach (Fig. 5) we can see
that the trust based approach (approach 4) is not performing
optimally. Still, in the single attacker far case, it performs
better than the other algorithms. For the other cases, we can
see that approach 4 converges to higher efficiency yet slower
than in (Fig. 4). The slower convergence can be explained by

the fact that the algorithm can only ask the top 3 nodes in the
list and thus accumulates less trust data.

Approach budget 900

single attacker far single attacker close

) 1 L]
X
0.8
% X X
- o
o
= 0.6 =
S
S04 °
0.2
Algorithm
¢ 1
two attackers 1 foo far 1 close all clients attacking i
¥ 4 X X X 4
0.8
5& [} []
S o6 X o
K ["
Q
S04
0.2
0 1 2 0 1 2
attempt attempt
Figure 4: Comparison of trust based approach (4) to ap-
proaches from [3] with unlimited budget
Approach budget 300
single attacker far single attacker close
=]
08 L. [
i x
> 0.6
o
c
2
o
E04 © o °
(o]
0.2
o Algorithm
¢ 1
two attackers 1 foo far 1 close all clients attacking 2
0.8 X 4
x X
2 0.6 x
c
Q0
o
E04 © % ° ° ¢ é
(9]
0.2
X X
0 1 2 0 1 2
attempt attempt

Figure 5: Comparison of trust based approach (4) to ap-
proaches from [3] with very constrained budget

VIII. DISCUSSION

When the defence budget is constrained, we noticed some
side-effects using the trust based approach. Due to the con-
strained budget, we can only ask a limited amount of members
during each defence attempt. Because we rank according
to trust, these are only the highest ranked members. When
a lower ranked member changes behaviour and suddenly

becomes benevolent and competent, it will never move up
the ranking because of the lack of interaction and evidence.
Only when highly ranked members move down the ranking,
evidence of some of the lower ranked members are collected;
this could cause a low ranked and (suddenly) trustworthy
member to move up. This side effect can be seen in Sec. VII
the constrained budget approach (Fig. 5) where Approach 4
converges slowly and never reaches the efficiencies according
to (Fig. 4).

A prerequisite for the trust-based defence, the message
tracking implementation, adds significant overhead to the
system. While originally receiving zero replies, with the
message tracking implementation enabled, a single message
can now receive up to three replies: the acknowledgement,
the task done message, and the actual reply. When under
heavy attack, these messages add to the load of the system,
probably worsening the congestion problem. Removing the
acknowledgement messages, which are currently not used by
the trust based algorithm, and merging the task done message
into the actual reply could help to reduce this overhead.

Our trust based approach currently asks the most trusted
members in the alliance for help, regardless of whether it
is transporting attack traffic. This can be improved using
heuristics; we can establish an attack tree first by asking
neighbours from which of their neighbours the attack origi-
nates, recursively. With the members that forward attack traffic
identified, we can rank those on trust like we do now for the
whole alliance. With the initial (time) penalty of learning the
attack tree, we can be more targeted at asking members that
can actually help in resolving the attack.

A trust based approach can also introduce new attack
vectors. Since the victim always turns first to their most trusted
allies, the amount of communication between them may be
higher than members who are trusted less. Even when this
communication is encrypted, by observing network commu-
nication patterns, a smart attacker may be able to identify
the victims most trusted allies. She can use this to gain an
advantage by somehow neutralising the victims allies first. If
agents communicate over public infrastructure this information
leakage is a potential risk. Establishing and using an encrypted
p2p overlay network for agent communication can obfuscate
these communication patterns since communication can go via
any of the members.

IX. RELATED WORK

Shabut et. al. describe a recommendation based trust model
with an effective defence scheme for mobile ad hoc networks
[11]. Their focus is mainly on preventing bad or malicious
recommendations from nodes by providing defences against
attacks on the trust model. The solution they propose relies on
three centralised components, on which they perform statistical
analysis and a clustering technique to detect deviations in trust
and to prevent malicious recommendations. Our paper focuses
on how trust can be used to improve defences on the network
infrastructure. We recognise there are also attacks possible on

the trust infrastructure, however this is beyond the scope of
this paper.

Chen et. al [12] discuss a collaborative multi domain
detection system for DDoS attacks. The authors developed
a secure infrastructure protocol(SIP) to establish mutual trust
or consensus. In SIP they adopt the adaptive trust negotiation
and access control framework [13] which uses the PeerTrust
[14] trust management system to establish trust. The trust used
in these systems established by matching credentials of the
requesting party to policies of the responding party. Our work
uses a different form of establishing trust, the trust in this
paper is based the behaviour of the participating node and
their attitude towards benevolence, competence and, integrity.

X. CONCLUSION AND FUTURE WORK

Using trust as a criterion for partner selection in multi-
domain collaborative defences seems promising. Maintaining a
short list of members who are responsive, capable and willing
to help can be a beneficial when defending collaboratively.
The results show indeed that the trust based algorithm in-
creases efficiency in consecutive defences as more evidence
is gathered from the members in the alliance. In cases where
the budget is limited, and the collected evidence comes only
from part of the alliance, the efficiency converges slowly
and remains lower than when using the original approaches.
At full budget, the trust-based approach converges faster to
comparable, and in some case even higher, efficiencies than
the original approaches. In general, we can conclude that there
are benefits when considering the members’ trust in selecting
candidates for task placement in multi-domain collaborative
defences.

We propose to increase efficiency further by: first, estab-
lishing an attack tree and, consecutively, applying the trust
based response on the nodes in the tree. More research is
needed to see whether the impact of establishing the attack
tree outweighs the benefits when asking for help. This paper
assumes that integrity is considered a condition for joining the
alliance, all members of the alliance are considered to have
the same integrity. In the future we intend to include integrity
in the risk calculation. We also pointed out that unintended
information leakage can occur when depending on the most
trusted allies. Researching if and under what conditions trust
based communication patterns leak trust information and how
to mitigate this leakage will be necessary continuation of this
work.

ACKNOWLEDGEMENTS

SARNET is funded by the Dutch Science Foundation NWO
(grant no: CYBSEC.14.003 / 618.001.016) and the National
project COMMIT (WP20.11). We would like to thank Ben de
Graalff, for his contributions to this project. We would also like
to thank our other research partners TNO, KLM and Ciena.

REFERENCES

[1] O. Kupreev, E. Badovskaya, and A. Gutnikov. Ddos attacks in q1 2019.
[Online]. Available: https://securelist.com/ddos-report-q1-2019/

[8]

[9]

[10]

[11]

(12]

[13]

[14]

A. Deljoo, L. Gommans, C. de Laat, T. van Engers et al., “The service
provider group framework,” Looking Beyond the Internet: Workshop on
Software-defined Infrastructure and Soft ware-defined Exchanges, 2016.
R. Koning, G. Polevoy, L. Meijer, C. de Laat, and P. Grosso, “Ap-
proaches for collaborative security defences in multi network environ-
ments,” in 2019 6th IEEE International Conference on Cyber Security
and Cloud Computing (CSCloud)/2019 5th IEEE International Confer-
ence on Edge Computing and Scalable Cloud (EdgeCom). IEEE, 2019.
A. Deljoo, T. van Engers, R. Koning, L. Gommans, and d. Cees,
“Towards trustworthy information sharing by creating cyber security
alliances,” in 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/ 12th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). 1EEE, 8 2018, pp. 1506-1510.

R. Koning, B. de Graaff, G. Polevoy, R. Meijer, C. de Laat, and
P. Grosso, “Measuring the efficiency of sdn mitigations against attacks
on computer infrastructures,” Innovating the Network for Data Intensive
Science (INDIS) workshop at Super Computing 2017, Denver (CO),
2017.

T. K. Das and B.-S. Teng, “Trust, control, and risk in strategic alliances:
An integrated framework,” Organization studies, vol. 22, no. 2, pp. 251—
283, 2001.

A. Deljoo, T. van Engers, L. Gommans, and C. de Laat, “Social
Computational Trust Model (SCTM): A Framework to Facilitate the
Selection of Partners,” in 2018 IEEE/ACM Innovating the Network for
Data-Intensive Science (INDIS), 2018.

D. Z. Levin, R. Cross, L. C. Abrams, and E. L. Lesser, “Trust and knowl-
edge sharing: A critical combination,” IBM Institute for Knowledge-
Based Organizations, vol. 19, 2002.

T. R. Koscik and D. Tranel, “The human amygdala is necessary for de-
veloping and expressing normal interpersonal trust,” Neuropsychologia,
vol. 49, no. 4, pp. 602-611, 2011.

G. Polevoy, “Defence efficiency,” arXiv preprint arXiv:1904.07141,
2019.

A. M. Shabut, K. P. Dahal, S. K. Bista, and I. U. Awan, “Recommen-
dation based trust model with an effective defence scheme for manets,”
IEEE Transactions on mobile computing, vol. 14, no. 10, pp. 2101-2115,
2014.

Y. Chen, K. Hwang, and W. Ku., “Collaborative detection of ddos
attacks over multiple network domains,” IEEE Transactions on Parallel
& Distributed Systems, vol. 18, pp. 1649-1662, 06 2007. [Online].
Available: doi.ieeecomputersociety.org/10.1109/TPDS.2007.1111

T. Ryutov, Li Zhou, C. Neuman, N. Foukia, T. Leithead, and K. E.
Seamons, “Adaptive trust negotiation and access control for grids,” in
The 6th IEEE/ACM International Workshop on Grid Computing, 2005.,
Nov 2005, pp. 8 pp—.

W. Nejdl, D. Olmedilla, and M. Winslett, “Peertrust: Automated trust
negotiation for peers on the semantic web,” in Secure Data Management,
W. Jonker and M. Petkovi¢, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 118-132.

