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Effective Mobile Forensics Through
Exploiting the Memory Security

Abstract

Mobile phones have become an indispensable part of our lives, and contain a wealth of
information that can be useful in criminal investigations. However, extracting this infor-
mation frommodern smartphones can be a challenge for forensic investigators.

This research delves into the hardware vulnerabilities of memory devices in modern
smartphones, which represent potential avenues for bypassing security mechanisms. By
identifying and exploiting these vulnerabilities, this thesis demonstrates that effective strate-
gies for extracting plaintext data from secured devices, thereby overcoming some of the
limitations imposed by conventional forensic methods.

In-depth analysis is presented on the development of novel forensic techniques that
leverage flaws in memory security architectures to access encrypted or otherwise protected
information. These methods not only highlight the potential for accessing valuable data
but also address the broader implications of device security for forensic investigations.

This study emphasizes the importance of continuous advancements in forensic science
to keep pace with evolving security technologies inmobile devices. It advocates for a proac-
tive approach to forensic research, one that anticipates future security measures and devel-
ops corresponding countermeasures to ensure the accessibility of critical evidence in legal
settings.
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Effective Mobile Forensics Through
Exploiting the Memory Security

Samenvatting

Mobiele telefoons zijn eenonmisbaar onderdeel van ons leven geworden enbevatten een
schat aan informatie die nuttig kan zijn bij strafrechtelijke onderzoeken. Het extraheren
vandeze informatie uitmoderne smartphones kan echter eenuitdaging zijn voor forensisch
onderzoekers.

Het onderzoek verdiept zich in de hardwarekwetsbaarheden van geheugenapparaten in
moderne smartphones, die potentiële manieren vormen om beveiligingsmechanismen te
omzeilen. Door deze kwetsbaarheden te identificeren en te exploiteren, toont dit proef-
schrift effectieve strategieën voor het extraheren van platte tekstgegevens van beveiligde
apparaten, waarmee enkele beperkingen worden overwonnen die worden opgelegd door
conventionele forensische methoden.

Er wordt een diepgaande analyse gepresenteerd van de ontwikkeling van nieuwe foren-
sische technieken die gebruikmaken van gebreken in geheugenbeveiligingsarchitecturen
om toegang te krijgen tot gecodeerde of anderszins beschermde informatie. Deze meth-
oden benadrukken niet alleen het potentieel voor toegang tot waardevolle gegevens, maar
pakken ook de bredere implicaties van apparaatbeveiliging voor forensisch onderzoek aan.

Deze studie benadrukt het belang van voortdurende vooruitgang in forensische weten-
schap om gelijke tred te houden met de evoluerende beveiligingstechnologieën in mobiele
apparaten. Het pleit voor een proactieve benadering van forensisch onderzoek, waarbij
rekening wordt gehouden met toekomstige veiligheidsmaatregelen en passende tegenmaa-
tregelenworden ontwikkeld omde toegankelijkheid van cruciaal bewijsmateriaal in juridis-
che omgevingen te waarborgen.
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1
Introduction

Mobile forensics is a specialized area of forensic science that applies scientific methods to
extract data from mobile devices, which can often serve as critical evidence in court. The
most commonly used mobile devices today are smartphones, typically locked with user
passwords. Historically, performing a physical data dump of a device has been considered
the last resort inmobile forensics, as it allows examiners to access all data, including deleted
files. However, with encryption now being a default feature on major smartphones, phys-
ical dumps alone no longer yield meaningful results. Additionally, the complexity of en-
cryption schemes and secure computing layers unique to each smartphone model makes
decrypting physical dumps an exceptionally challenging task. Consequently, digital foren-
sics research has increasingly shifted towards exploiting software vulnerabilities in the tar-
get system, leading to a decline in memory-focused research. Despite this trend, there re-
mains unexplored research potential in memory storage devices. In addition to continu-
ously evolving toward faster and denser technology, the memory devices used in modern
smartphones are becoming more complex, integrating their dedicated controllers inside a
single package, which provides advanced security features. These evolving architectures re-
quire in-depth analysis for effective forensic investigations. By focusing on the vulnerabili-
ties in these memory devices, new opportunities for advancing mobile forensic techniques
can be explored.

1



1
1.1 Research Questions

Throughout this thesis, the following research question is explored: “What kind of secu-
rity features in flash memory can be exploited to perform effective data extraction
from modern mobile devices?” This question is addressed through the following sub-
questions:

• What are the current challenges in forensic data extraction from mobile de-
vices?
The current status ofmobile forensics is reviewed inChapter 2, addressing the evolv-
ing challenges in extracting data frommobile devices.

• How is the mobile device data stored in flash memory, and how should it be
extracted?
Thehardware architectureof flashmemory and embeddedMultiMediaCard (eMMC)
is examined in Chapter 3 and Chapter 4, respectively, as these are widely used mem-
ory systems in modern mobile devices. The structural architecture of these devices
is investigated, followed by experimental data recovery.

• Which security features of flash memory are used in modern mobile device
to secure the data? And how can they be exploited?
A detailed analysis of eMMC is conducted, focusing on security features such as se-
cure data erasure and replay attack protection. Reverse engineering of these security
features, both at the hardware and software levels, is carried out to exploit them for
forensic data recovery in Chapter 5 and Chapter 6.

1.2 Key Contributions

This thesis mainly makes the following contributions:

• Review of the evolution of mobile forensic techniques:
As smartphones and IoT devices have become integral to daily life, their security
mechanisms and regulatory frameworks have grown increasingly complex. This the-
sis critically reviews the effectiveness of current standard mobile forensic methods
in light of these developments.

• Comprehensive hardware analysis of modern memory devices:
NANDflashmemory, due to to its cost-efficiency, iswidely adopted as storagemedia
in contemporary digital devices. This research conducts an in-depth investigation
into its architecture and identifies vulnerabilities that can be leveraged for digital
forensic purposes.

2



1
• Reverse-engineering of security features in memory devices:
Modern managed flash memory incorporates security features such as Secure Erase
and the Replay Protected Memory Block (RPMB). This thesis reverse-engineers
these features to assess their practical implementation, revealing that they are not
entirely secure and can be exploited for effective forensic data recovery.

• Exploitation of memory security vulnerabilities for enhanced mobile foren-
sics:
Despite the implementation of securitymitigationmeasures inmodernmemory de-
vices, this research uncovers vulnerabilities in both hardware and software. Exploit-
ing these weaknesses allows for more effective forensic data extraction from mobile
devices, overcoming certain security barriers.

1.3 Thesis Overview and the Sources of the Chapters

Each chapter of this thesis is based on research work published in various academic outlets
over the years. Below is a list of the publications along with their abstracts.

• Chapter 2
A. Fukami, R. Stoykova, and Z. Geradts, “A new model for forensic data
extraction from encrypted mobile devices,” Forensic Science International:
Digital Investigation. Volume 38, 2021.
The authors explained the increased encryption and security protection measures
in modern mobile devices and their impact on traditional forensic data extraction
techniques for law enforcement purposes. It was also demonstrated that in order
to overcome encryption challenges, newmobile forensic methods rely on bypassing
the security features and exploiting system vulnerabilities. A newmodel for forensic
acquisitionwas also proposed, being supported by a legal framework focused on the
usability of digital evidence obtained through vulnerability exploitation.
K. Schot and A. Fukami, “In-Situ Global Ultra Thinning of Live Chip Back-
side for Digital Forensic and Failure Analysis,” Proceedings of the 49th Inter-
national Symposium for Testing and Failure Analysis. pp. 205-208, 2023.
The authors presented a new backside thinning techniques of a system-on-a- chip
(SoC) while preserving its packaging integrity on a printed circuit board within a
smartphone. The authors effectively achieved comprehensive thinning of bulk Sili-
con side of a SoC with more than 100mm2 surface area to a sub-10μm thickness.

• Chapter 3
A. Fukami, S. Ghose, Y. Luo, Y. Cai, and O. Mutlu, “Improving the relia-
bility of chip-off forensic analysis of NAND flash memory devices,” Digital
Investigation, Volume 20, 2017.
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1
Theauthors performedan analysis of the errors introduced intomulti-level cell (MLC)
NAND flash memory chips after the device has been seized. It was identified that a
large number of bit errors can be introduced to the flash memory by a long storage
time and thermal-based chip removal in digital forensic procedure. The authors suc-
cessfully reduced the errors through the hardware voltage control called read-retry.
J. P. van Zandwijk and A. Fukami, “NAND Flash Memory Forensic Analysis
and theGrowingChallenge of Bit Errors,” IEEE Security&Privacy, Volume
15, pages 82-87, 2017.
The authors discussed challenges imposed by reliability aspects of modern NAND-
flashmemory chips from a digital forensic perspective, and describe how acquisition
and analysis techniques can be adapted to recover accurate and relevant data from
NAND-flashmemory chips. The authors also describe the idea of using error infor-
mation from NAND flash memory chips as a means to infer forensically relevant
information about the device, such as the age of the stored ata.

• Chapter 4
A. Fukami, S. Sheremetov, F. Regazzoni, Z. Geradts and C. De Laat, “Ex-
perimental Evaluation of e.MMC Data Recovery,” IEEE Transactions on
Information Forensics and Security, Volume 17, pp. 2074-2083, 2022.
EmbeddedMultimedia Cards (eMMCs) data recovery procedures were explored in
this article. The authors investigated inside structures of eMMCs, and evaluate ad-
vanced data recovery procedures. It was discovered that data can be recovered, some-
times more than 99%, even after it is erased through eMMC Secure Erase routine.
A. Fukami, F. Regazzoni and Z. Geradts, “Data Sanitization on eMMCs,”
28th Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 455-460, 2023.
The authors analyzed repurposed eMMCs mounted on digital devices, and evalu-
ated their sanitization practice. It was found that the data from the formerly used
device can still be recovered, whichmay lead to an unintentional leakage of sensitive
data such as personally identifiable information (PII). Authors discussed the differ-
ence between the traditional NAND flash memory and the eMMCs, and reviewed
how the data sanitization schemes should be introduced to the eMMCs.

• Chapter 5
A. Fukami, R. Buurke and Z. Geradts, “Exploiting RPMB authentication in
a closed source TEE implementation,” Forensic Science International: Digi-
tal Investigation, 2024.
The usage of the Replay ProtectedMemory Block (RPMB) in an eMMCmounted
on a smartphone was reverse-engineered both through software and the hardware.
The authors achieved in extracting the secret key, which allows to manipulate the
RPMB data of the target device. By exploiting the poor implementation of the
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1
RPMB of the target device, the authors succeeded in breaking the anti-rollback pro-
tection to enable data restoration after the data wipe operation has been completed.

• Chapter 6
A. Fukami and R. Buurke, “Keyless Entry: Breaking and Entering eMMC
RPMB with EMFI” ACMWisec 2024, 2024. The authors performed the elec-
tromagnetic fault injection (EMFI) against the RPMB authentication in eMMCs.
By identifying the most vulnerable location of a target eMMC against the EMFI,
the authors achieved in bypassing the cryptographic authentication and writing the
arbitrary value in the protected RPMB in eMMCs without knowledge of the secret
key.

1.4 Research Material Availability

Data and other related resources used for this thesis are available at
Chapter 2: https://github.com/topig/Flash_Multi_Write_Test
Chapter 3: https://github.com/topig/RPi-NAND
Chapter 6: https://github.com/topig/RPMB_Glitching
Other image data can be available on request.
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2
Evolution of Mobile Forensics: From Physical

Data Analysis to Breaking Security Barriers

In modern criminal investigations, mobile devices are frequently seized from crime scenes,
and the data they contain often serves as critical evidence. Over the decades, numerousmo-
bile forensic techniques have been developed and rigorously evaluated through research to
extract potential evidence from these devices. However, asmobile devices become essential
tools for daily life, security and privacy concerns grow, and modern smartphone vendors
have implemented multiple types of security protection measures to guard against unau-
thorized access to the data on their products. This trendmakes forensic acquisition harder
than before. As a result, data extraction from those devices for criminal investigation is
becoming a more challenging task. Today, mobile forensic research focuses on identify-
ing more invasive techniques, such as bypassing security features and breaking into target
smartphones by exploiting their vulnerabilities. In this chapter, increased encryption and
security protection measures in modern mobile devices are explored. Changes in digital
forensic techniques according to those security features will be discussed.

2.1 Challenges and Advances in Mobile Forensics Against Increasing Security
Measures

Forensic analysis of mobile devices for criminal investigation has become an increasingly
critical investigative capability for law enforcement agencies. In recent decades, various
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2

researchers in forensic science have established methods and processes to extract evidence
data from mobile devices in a forensically sound manner [1, 2, 3]. Those methods have
been widely used for forensic purposes in real cases, and have tackled general challenges in
mobile forensics, such as the lack of standardization within the mobile industry and the
rapid rate at which mobile device technology changes. However, on the other hand, new
challenges have recently been imposed by the strong security features in modern mobile
devices [4]. Encryption, together with other security guard features, has clearly created
challenges for forensic investigators seeking to extract data from mobile devices seized at
crime scenes. Those security features have disabled many of the data acquisition methods
that have been used historically, and newmethods for acquiring data frommodernmobile
devices must be explored.

The challenges posed by encryption were publicly highlighted during the 2015 dispute
between Apple and the FBI following the widely reported San Bernardino, California, ter-
rorist attack. That case not only sparked an intense legal debate about the regulation of
cryptography and governmental access to encrypted devices, but also brought public at-
tention to issues around the security and privacy of data stored on personal mobile devices.
Not surprisingly, mobile device vendors have been implementing higher levels of security
features in their products to address personal data protection. Currently, on modern mo-
bile devices, user data is usually highly secured by default from malicious access by unau-
thorized attackers.

The impact of encryption on forensic analysis, as well as effective data acquisition pro-
cesses, has been widely researched in the computer forensics domain [5, 6, 7, 8]. It has
been suggested that temporary files, data on volatile memory, metadata of the encryption
scheme, or access to the keymanagement system can decrypt the target data, thereby allow-
ing examiners to extract original data, which can then be used for criminal investigations.
However, challenges in data acquisition from encryptedmobile devices come from the fact
that those pieces of listed data are not accessible by default, requiring modification of the
exhibit device or complicated reverse-engineering at multiple layers in software and hard-
ware.

Althoughmodifications to the exhibit devicemaybenecessary, it is imperative touphold
themost important principle of digital forensics: “digital evidencemust remain unaltered.”
Failure to adhere to this principle could compromise the integrity of the evidence, thereby
diminishing its value in the court trial process.

8
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2.2 Paradigm Shift in Mobile Forensics

2.2.1 Traditional Mobile Forensic Techniques

The acquisition techniques used in mobile forensics have been categorized using the classi-
fication system suggested byNational Institute of Standards andTechnology (NIST). The
classification system includes the following five levels [9, 4]. A brief summary of the tech-
nical methods used at each level is explained below, along with the challenges that these
techniques face when analyzing modern mobile devices:

• Level 1: Manual Extraction
An examiner directly manipulates the target mobile device using the device’s input
interface (i.e., keypads and buttons), and records the content shown on the display
of the device. As long as the target device is in unlocked state and it takes users input,
this is still a valid process to extract data from modern digital devices. However,
given the large volume of data stored in the recent devices, this process is not always
feasible.

• Level 2: Logical Extraction
There are various off-the-shelf tools available that allow users to connect a target
device through external interfaces, such as USB or Bluetooth, and extract existing
files. This process is effective if the target device is unlocked and the examiner has the
necessary privileges to access the data. While individual files, such as photos, can be
accessed with standard user privileges, system files and databases used by messaging
applications typically require higher privileges. Additionally, modern applications
often include “burn-time” features, where data, such as receivedmessages, are erased
after a set period. Therefore, forensic examinersmust consider timing carefully after
seizing the device.

• Level 3: Hex Dumping / JTAG
When techniques at this level are employed, the full or partial raw data (hex dump)
stored in the storage media of the target mobile device is acquired. Hex dump-
ing is performed using available access ports on the target’s Printed Circuit Board
(PCB), such as Join Test Action Group (JTAG) or In-System Programming (ISP)
[10]. Techniques that can acquire raw data without hardware destruction are gener-
ally classifiedwithin this category. The acquired rawdatamust thenundergo further
processing to be converted into human-readable form. However, since PCB layouts
are proprietary to manufacturers, identifying these access ports is a challenging task.
Additionally, debug interfaces are often disabled on modern digital devices, further
complicating hex dumping for forensic examiners.

• Level 4: Chip-off
Chip-off is a technique in which the non-volatile memory component is detached
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from themain circuit board [11, 12]. The physical data stored in thememory chip is
then directly extracted for further analysis. Through this method, an examiner can
obtain an identical copy of the entire raw data of the target mobile device, includ-
ing the data stored in unallocated areas, which possibly contain remnants of deleted
data. For modern mobile devices, as the physical data is typically encrypted, further
processing is required in order to recover the human-readable data after extracting
data through chip-off.

• Level 5: Micro Read
Micro read is a techniquewhere the die in an IntegratedCircuit (IC) chip is exposed
from its package and the electrical status of the target circuit is directly observed
through a Scanning Electron Microscope (SEM). This technique is highly destruc-
tive, as the internal structure of an IC chip needs to be exposed by removing its pack-
aging material and bulk silicon. Furthermore, a highly dedicated lab is required for
this level of analysis since multiple specialized equipment such as SEM and the de-
capsulation equipment are required to performMicro Read analysis.

Data acquired throughLevel 1 and 2 techniques is typically referred to as logical data, while
data obtained viaLevel 3 to 5 techniques is knownas physical data, whichhas the advantage
of including remnants of deleted data. Generally, data parsing is necessary to render physi-
cal data into human-readable form. In traditional mobile forensic models, it is commonly
understood that higher acquisition levels increase the likelihood of successful forensic data
recovery. As examiners employ higher acquisition levels, the range of accessible data ex-
pands. Additionally, physical acquisition methods can bypass user authentication mech-
anisms, such as PIN codes and passwords, and do not require the target device to be in
a normal booting state. Consequently, law enforcement agencies widely adopt chip-off
data acquisition as the highest-level data extraction technique for various mobile devices.
Although micro-read is ranked as the highest level in the aforementioned classification sys-
tem, and past research has demonstrated that reading data directly from the memory die
is possible [13], it is not considered a practical mobile data extraction technique in mobile
forensics, to the best of the author’s knowledge. This is primarily due to the shrinking tech-
nology size in semiconductor fabrication and the increasing density of memory storage.

2.2.2 Encryption and Other Security Features in Modern Mobile Devices

In order to protect user privacy and provide confidentiality of data, encryption techniques
are currently implemented in modern mobile devices by default. Traditionally, in mobile
devices, encryption techniques were applied at the application level in order to protect in-
dividual user data such as emails and photos. With the growing concerns over security and
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privacy, however, encryption techniques are now implemented at the Operating System
(OS) level with hard-coded unique key information which is not accessible even by device
manufacturers. Therefore, mobile device data at rest is stored in an encrypted manner.
Two types of encryption schemes are frequently used in mobile devices. One is Full Disk
Encryption (FDE) and the other is File Based Encryption (FBE) [14]. FDE is a technique
where the entire user data partition is encrypted with a single encryption key, while FBE
encrypts different files with different keys, allowing files to be decrypted independently. In
Apple devices, FDE was first introduced in iPhone 3GS with iOS 3.X [15]. Apple devices
with iOS versions higher than 8 use FBE which encrypts user data on a per file basis with
a user passcode. In Android devices, FDE was introduced in Android 4.4, and was sup-
ported up until Android 9. Starting with Android 7.0, FBE has been used as the standard
encryption technique. As of 2020, it is reported that more than 80 percent of the Android
devices on the market are running on an Android version higher than 6 [16]. This means
that user data in the Android devices that are seized during the criminal investigation is
nowmostly encrypted.
In addition to the encryption techniques, other “security by design” features are imple-
mented in modern mobile devices. One example is Root of Trust (RoT). When a mobile
device boots, each hardware and software component in the boot-chain is validated to en-
sure that only the legitimate components would run on the system. If the validation fails
due to unsigned software or for other reasons, the target device does not boot, denying
access to the device by malicious users. This makes several mobile forensic methods such
as using special bootloaders suggested by Vidas et al. unworkable [17] . Additionally, the
secure mode of main processor called the Trusted Execution Environment (TEE) is heav-
ily utilized in modern smartphones. TEE provides an isolated environment for security
critical components in a system by separating the secure operating system from a normal
operating system, both running on the same hardware device. Hence a secure world and
a normal world can co-exist on a system. ARM’s TrustZone technology is largely used in
Android devices. Apple uses a similar technology called Secure Enclave Processor (SEP)
for isolating the cryptographic key and other sensitive information processing. If the TEE
is used, even “rooting”, or acquiring the highest privilege in the system does not allow ac-
cess to the encryption key-related data. By including those security features, mobile device
manufacturers are protecting not only user data, but also their corporate proprietary data
and technologies. As a result, users have little freedom to control their ownmobile devices,
and they are limited to using them within the device or the OS vendor’s closed ecosystem.
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2.3 Mobile Forensic Techniques in the Encryption Era

Given the complex structure of modern smartphones, forensic data extraction from these
devices requires a combination of different techniques. Some of the main techniques cur-
rently in use are listed below. Often, multiple processes are necessary to access and present
user data stored on smartphones in a readable format.

2.3.1 Reverse Engineering

The core components of modern mobile devices consist of a System on a Chip (SoC),
memory, and sometimes an additional dedicated security chip. Extractingmeaningful data
from these devices often requires reverse engineering both the hardware and the software
running on each component. When an RoT is implemented, the initial code executed
on the device is hard-coded into the processor via one-time-programmable memory, and
device-specific keys are often embedded directly into the processor. As a result, chip-level
reverse engineering becomes a valuable method for accessing this critical information. In
2023, research by Schot and Fukami [18] demonstrated a technique to remove bulk sili-
con and access the SoC logic while maintaining the SoC’s operational status within a mo-
bile phone. By employing reactive ion etching, bulk silicon was thinned while keeping the
chip functional on the Printed Circuit Board (PCB). This SoC-level reverse engineering
approach, comparable toMicro Read methods, enables the retrieval of secret information
directly from the SoC.

On the software side, the code running on modern mobile devices is not always acces-
sible to third parties. While leaked code may sometimes be available, otherwise, one can
attempt to extract it by injecting faults into the secured system. Once the code is obtained,
reverse engineering can be employed to understand the structure of the target security sys-
tem.

2.3.2 Vulnerability Exploitation

After reverse engineering the components running on the target device, investigators may
uncover system vulnerabilities that can be exploited to execute arbitrary code. Once these
vulnerabilities are identified, forensic investigators can attempt to run arbitrary code to
brute-force the password or extract encryption key-related information. By acquiring the
secret information, investigators can attempt to decrypt the encrypted data stored on the
target device. Security researchers continuously search for these vulnerabilities in consumer
devices, while smartphone manufacturers regularly update their software and firmware
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over the air to patch known vulnerabilities and protect their products. However, if a target
device has not been updated, known vulnerabilities may still be exploitable.

Another way to break the chain of trust is by injecting faults or glitches into the tar-
get device through hardware. Hardware fault injection methods include underfeeding the
power supply, transmitting electromagnetic signals, and injecting optical beams. These
techniques are used to induce unintended behavior in the target device. By injecting a fault
into the code verification scheme of the boot chain, it is possible to execute arbitrary code
on the device. Research has already demonstrated the effectiveness of fault injection for
compromising the boot sequence and executing code with the highest privileges from an
Android device [19]. Fault injection can also be useful for disabling the lock on debugging
interfaces, such as JTAG, on the target device.

2.3.3 Utilizing Custom Bootloaders

If an examiner can load a custom bootloader into the target device during the boot pro-
cess and run it, there is a great chance that the device can be manipulated by running ar-
bitrary code, making physical data acquisition possible. Traditionally, loading a custom
bootloader was enabled by the device manufacturer. Special modes (i.e., download mode
or rescue mode) allowed users to run a custom bootloader on the target system during the
boot-up. In modern devices, however, in order to maintain system integrity, manufactur-
ers enablebootloaders to runonly after they areproperly verified tobe signed, allowingonly
their codes to run on the device. Bootloaders are responsible for initializing hardware com-
ponents and loading the operating system, which then starts device operations, including
encryption. When a modern mobile device is powered on, multiple bootloaders are exe-
cuted in sequence. The first bootloader, hard-coded into the Read OnlyMemory (ROM)
of the application processor, is known as the boot ROM or Primary Boot Loader (PBL).
This first boorloader then loads the Secondary Boot Loader (SBL), which typically loads
another bootloader responsible for finally loading the operating system [20]. Bootloaders
are only loaded into systemmemory once the verification processes have been successfully
completed, allowing the system to proceed with normal boot operations. The loading of
bootloaders via download mode occurs at the SBL level. Verification processes run in a
chain, meaning that code in each boot stage can only execute if its signature is verified by
the preceding stage. This process begins with the initial verification key, which is stored
in the one-time-programmable memory area of the SoC, ensuring the key cannot be tam-
peredwith. In theAndroid securitymodel, the bootloader verifies the integrity of the code
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by using a public key stored on the device. The code itself is signedwith a private key that is
not present on the device, but the corresponding public key is used to verify the signature.
The hash of this public key, which in this case is a RoT, is stored in hardware fuses within
the SoC. During the boot process, the bootloader compares the public key hash with the
value stored in the fuses. If the signature is verified successfully, the boot process continues;
otherwise, the device is halted to prevent unauthorized code from running.

For some models of modern mobile devices, signed bootloaders may be publicly avail-
able [20]. By flashing these bootloaders, which may contain known vulnerabilities, onto
the target smartphone, an examiner can potentially gain the highest privileges on the de-
vice, leading to full control and successful acquisition of memory data. Additionally, if
anti-rollback mechanisms are not implemented, the examiner can attempt to downgrade
components of the boot chain to earlier versions. This approach allows exploitation of
vulnerabilities that have been addressed in security updates of newer boot chain versions.
However, themost effectivemethod for gaining access and executing arbitrary code is to ex-
ploit vulnerabilities in the boot ROM, a technique that has been researched and employed
for data access on modern mobile devices [21].

Althoughmodern mobile devices prohibit users from loading custom bootloaders, it is
nowwidely known that bootROM-level flashing is possible by booting the device into the
processor-level special boot mode. The terminology for these boot modes varies by man-
ufacturer. For example, Qualcomm chipsets use Emergency Download (EDL) mode, Ap-
ple chipsets use Device Firmware Update (DFU) mode, and MediaTek chipsets use Brom
(BootROM)orPreLoadermode. Thesemodes allowmobile phonemanufacturers to flash
software onto their devices. Forensic examiners can utilize thesemodes to flash customized
bootloaders onto the target smartphone, which facilitates the acquisition of user data with-
out altering it. Unless additional authorization mechanisms are in place, entering these
special modes typically requires a specific set of commands, a special cable, or hardware
modifications. The use of custom bootloaders for data acquisition is gaining popularity
because this technique can be applied to a wide range of devices with the same chipset. Ad-
ditionally, it is often challenging formanufacturers to patch vulnerabilities at the processor
level. Research has demonstrated that vulnerabilities in the bootloader of popular chipsets
can be exploited for user data acquisition [20, 22].
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2.3.4 Side-Channel Analysis

The hardware-bound key stored in the one-time-programmablememory of the SoC is cru-
cial for protecting the overall security of modern mobile devices. One application of this
key is to derive the necessary information for decrypting stored data on a mobile device.
Another application is to verify the integrity of the code running on the device. Therefore,
obtaining this key would provide an examiner with the ultimate opportunity to access user
data, as it is essential for breaking theRoT or recovering other key information. Given that
this hardware-bound key is highly secure and inaccessible evenwith the highest systempriv-
ileges, side-channel analysis is gaining interest in mobile forensics.

When an IC chip operates on a circuit board, electromagnetic emanations are gener-
ated based on the current consumed by the internal transistors. By capturing these signals
multiple times and correlating the collected data with a power consumption model of the
transistors, secret information stored within the target ICmay be revealed, allowing the at-
tacker to access internal data [23]. This type of analysis, known as Side Channel Analysis
(SCA), has been a prominent area of security research, particularly in the context of smart
cards and other security technologies. Recent research has demonstrated that SCA can
be used to retrieve cryptographic keys from the application processors in modern mobile
devices [24, 25].

Although each application processor is unique and requires specific research, SCA is a
promising technique for acquiring cryptographic keys frommodernmobile devices. Once
obtained, these keys can be used to decrypt data such as bootloaders. Additionally, by
reverse engineering the keyderivationprocess, an examinermay conduct offlinebrute-force
attacks to identify the user passcode of the target device [25].

2.4 Mobile Forensics Through Non-Volatile Memory Storage

Given the challenges and techniques discussed above, current mobile forensic methods
increasingly focus on reverse engineering the application processor within a SoC and the
software it runs. Simple chip-off analysis is no longer sufficient for effective data recovery,
which has led to a decline in forensic techniques that rely solely on memory chips. Mean-
while, non-volatile memory technology is becoming increasingly complex, with memory
chips now containing multiple logic silicon dies within a single package. Consequently,
it remains crucial to thoroughly investigate non-volatile memory chips used in mobile de-
vices.
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2.4.1 Hardware Reverse Engineering

NAND flash memory remains the most widely used technology in modern storage solu-
tions due to its high density, cost-effectiveness, and non-volatile nature. However, the di-
rect integration of raw NAND flash memory into digital devices is becoming less com-
mon as storage technologies evolve. Instead, NAND flash is incorporated into more so-
phisticated, multi-layered storage solutions such as embeddedMultiMediaCard (eMMC),
Universal Flash Storage (UFS), Non-volatile Memory express (NVMe), and UFS-based
Multi Chip Package (uMCP). Apple products utilize proprietary controllers in their flash
memory-based storage solutions, enhancing performance and security. These storage solu-
tions encapsulate flash memory and the controller in a single package, adding complexity
to forensic investigations. The controller manages tasks such as wear leveling, error correc-
tion, and encryption, effectively acting as a gatekeeper to the data stored within the flash
memory.

Understanding the inner workings of these storage devices and extracting valuable in-
formation from the internal flash memory necessitates hardware-based reverse engineer-
ing. This involves identifying the required voltages, commands, and signals to access the
memory, as well as overcoming any security measures implemented by the controller. By
successfully interfacing with these storage devices, forensic investigators can potentially ac-
cess hidden or protected data areas, which may contain critical information such as secu-
rity keys or remnants of deleted files. Access to such hidden data is invaluable for forensic
analysis, as it can provide insights that are otherwise inaccessible through standard data
extraction methods.

Expanding forensic capabilities to include the reverse engineering of storage devices is
becoming crucial, given the increasing complexity of modernmobile storage solutions. As
manufacturers continue to enhance the security and performance of their products, the
role of hardware-based analysis in forensic investigations will only grow in importance, of-
fering the potential to unlock critical evidence hidden within non-volatile memory.

2.4.2 Physical Data Extraction for Deleted Data Recovery

Once the appropriate method for accessing stored data in flash memory is determined,
forensic investigators can proceed with the extraction of data from all physical addresses
of the target flash memory. This process involves reading data at the lowest level, bypass-
ing the logical structures imposed by theOS and internalmemorymanagement. Advanced
storage solutions, such as eMMC and UFS, contain internal controllers that manage the
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translation of data read and write commands issued by the host system to the underlying
flash memory. In scenarios such as factory resets or when a device undergoes data wiping,
the erase commands from the host system is translated by the internal controller, rendering
the data inaccessible under normal conditions. However, because the actual data blocks
often remain intact, examining the entire physical memory space is essential for compre-
hensive data recovery in mobile forensics. A detailed analysis can reveal hidden or residual
data that may include critical evidence, such as previously deleted files, metadata, or other
forms of digital artifacts.

Forensic data recovery efforts must therefore focus on direct interaction with the mem-
ory chip at the physical level, utilising the knowledge obtained through hardware reverse-
engineering. This approach allows investigators to retrieve data that is no longer accessible
through the device’s standard interfaces, thereby increasing the chances of recovering cru-
cial information for forensic analysis.

2.4.3 Exploiting Security Features in Flash Memory

Aforementioned advanced storage solutions incorporate various security features, includ-
ingpasscode locks, secure erase functionalities, andReplayProtectedMemoryBlock (RPMB),
designed to protect critical data on the device from unauthorized access. These security
mechanisms are managed by the internal controller embedded within the memory chip,
which runs proprietary vendor-specific firmware.

Reverse-engineering the firmware running on the internal controller is one of the most
effective methods for understanding and potentially circumventing these security features.
Analyzing this firmwaremay reveal vulnerabilities that can be exploited to execute arbitrary
code, thereby disabling the security mechanisms. However, in most cases, the firmware
is inaccessible due to its proprietary nature, making memory storage devices a black box
for forensic investigators. As a result, investigators often rely on a black-box approach,
monitoring inputs and outputs to bypass security features indirectly. Despite these chal-
lenges, leveraging such techniques allows forensic experts to developmethods for overcom-
ing built-in security features, enabling effective data extraction and analysis from devices
utilizing advanced storage technologies.

2.5 Conclusion

Due to the growing concerns over security and privacy among mobile device users, driven
by the valuable financial and personal data stored on these devices, manufacturers are in-
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creasingly implementing robust encryption andother advanced securitymechanisms. This
trend has significantly impacted traditional forensic data acquisition methods, as these en-
hanced securitymeasures are designed to protect sensitive user information fromunautho-
rized access.

Historically, acquiring rawdata from the non-volatilememory of amobile devicewould
often yield valuable information for criminal investigations. However, as discussed in this
chapter, contemporary physical data acquisition techniques frequently fall short of pro-
ducing human-readable data due to sophisticated encryption protocols. Moreover, addi-
tional security features, such as secure boot processes and access control mechanisms, have
made it increasingly difficult for forensic examiners to extract even live data from target
devices.

As a result, the ability to bypass or disable device locks and encryption, while maintain-
ing the integrity of user data, has become a critical objective for forensic investigators work-
ing with modern mobile devices. To achieve this, extensive reverse engineering and the
exploitation of security vulnerabilities are now essential components of forensic method-
ologies. While much of the vulnerability-based research has traditionally concentrated on
the SoCs and security chips of target devices, the complex architecture and multiple layers
of hardware present in modern memory chips offer a promising avenue for further explo-
ration. Exploiting the security features of memory chips themselves could therefore repre-
sent a significant frontier in the evolving landscape of mobile forensics.
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3
Effective Forensic Data Recovery

from FlashMemory

Flash memory is the most commonly used storage technology in modern mobile devices
due to its low cost-per-bit and high storage density. This chapter explores the intricacies
of flash memory technology in detail and examines its impact on forensic data recovery
methods.

3.1 Challenges in NAND Flash Memory Forensics and Mitigation Techniques
for Data Recovery

NAND flash memory continues to increase in popularity as a storage medium for a wide
range of devices, such as smartphones, thumbdrives, and Solid StateDrives (SSDs). As a re-
sult, digital forensic investigators have been encountering significantly more NAND flash
memory based devices than before during the course of criminal investigations. When an
operational NAND flash memory based device is received for analysis, investigators can
use logical data extraction, where data can be read out using an interface provided by the
device vendor [9]. Commercial software-based forensic acquisition tools automate logi-
cal data extraction, and can yield sufficient data from the device. Unfortunately, a device
received as part of an investigation may be physically damaged, or the device may not pro-
vide an interface for data acquisition, and as a result, its data may be inaccessible using
the automated software-based approach. In these cases, digital forensic investigators must
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physically remove the NAND flash memory chip from the Printed Circuit Board (PCB)
inside the device [26]. Once the chip has been removed, investigators can perform low-level
analysis on the chip, at which point the data that was originally on the chip can potentially
be recovered. This analysis method is commonly referred to as chip-off analysis.

Previous research on forensic low-level analysis of NAND flash memory chips has fo-
cused on reverse engineering the techniques implemented by the original NAND flash
memory controllers, in order to access the data residing on the chip. Breeuwsma et al. es-
tablished a thorough forensic data recovery procedure from a NAND flash memory chip,
going from acquiring the physical image of the data on the NAND flash memory chip to
reconstructing the file system used to store the data, by reverse engineering multiple tech-
niques that are implemented in NAND flash memory controllers. For relatively old de-
vices, where the number of raw bit errors that occurred within the device are low, this data
recovery procedure is often sufficient. However, as NANDflashmemory has scaled down
aggressively in process technology node size to enable higher storage capacity, the number
of raw bit errors that occur inNANDflashmemory has increased by several orders ofmag-
nitude, as demonstrated experimentally in Cai et al. [27], Y. Cai, E. F. Haratsch, O.Mutlu,
and K. Mai [28], Cai et al. [29]. As a result, the procedure proposed by Breeuwsma et al.
[12] often cannot adequately recover the data in modern NAND flash memory.

In order to ensure that data retrieved from NAND flash memory by an end user does
not contain any errors despite the increasing occurrence of raw bit errors, modernNAND
flash memory controllers employ sophisticated Error Correction Codes (ECCs), such as
BCH codes [30, 31, 32] or LDPC codes [33, 34]. These codes can correct up to a fixed
number of raw bit errors for every read operation. Likewise, to maintain the integrity
of digital evidence extracted from a device that uses NAND flash memory as its storage
medium, forensic investigators need to correct errors that appear in the raw data extracted
from the device. Thus, it is essential for the forensic data recovery procedure to extract the
ECC information stored within the chip and use this information to correct the errors. In
addition to ECC, many modern flash controllers employ data randomization techniques,
where data that is written into memory is scrambled by XORing the data with a repro-
ducible pseudo-random number, to reduce the impact of data value dependence on relia-
bility [35, 36]. Zandwijk [37] provides a mathematical approach to reverse engineer both
the ECC and data randomization algorithms from the raw data that is extracted from the
NAND flash memory chip.

However, even when the ECC and data randomization algorithms are correctly identi-
fied and used to decode the raw data extracted from theNANDflashmemory chip, digital

20



3

forensic examiners may find that many chunks of data contain more errors than the ECC
algorithm is able to correct. The ECC codeword contains only enough information to
correct up to e bits within an n-bit data chunk (hereafter e represents the error correction
capability). If the data chunk contains more than e errors, the errors are uncorrectable, and
the data cannot be successfully recovered. This compromises the integrity of the recovered
data for forensic analysis.

In order to perform chip-off analysis, forensic investigators follow best practices used
by electronics manufacturers for their rework process, where manufacturers remove and
replace faulty components in their products ([38, 39]). This procedure uses hot air to heat
the chip just enough to melt the solder that connects the chip to the PCB, which allows
the safe removal of the chip. This technique is referred to as thermal-based chip removal.
Even though the temperature used during chip removal is the minimal temperature neces-
sary for the solder to reach its melting point (usually more than 200◦C), this temperature
is still high enough to introduce a very large number of new raw bit errors into the chip.
Unfortunately, because the ECCdata stored on-chip has a limited error correction capabil-
ity, newly introduced errors can often make a significant portion of the data on a NAND
flash memory chip unrecoverable with traditional low-level analysis techniques.

To mitigate the impact of the new errors introduced during chip removal, the dynamic
mechanisms implemented within the NAND flash memory are examined. In particular,
the read-retrymechanism [28] will be studied in this chapter. In a NAND flash memory
cell, data is stored in the form of the threshold voltage of the cell’s floating-gate transistor
(i.e., the voltage atwhich a transistor turns on). In order to read data from theNANDflash
memory cell, a read reference voltage is applied to the transistor. If the read reference volt-
age is higher than the threshold voltage, the cell turns on; otherwise, the cell turns off. As
several prior works have shown [27, 28, 29, 40, 41, 42], the threshold voltage of a floating-
gate transistor can shift over time, due to continuous leakage of charge from the transistor.
Since the standard read operation uses the default read reference voltage, it is unable to ac-
count for such a threshold voltage shift, and thus the read operation introduces an error
(e.g., a bit value 1was read even though the stored valuewas 0). The flash controller canmit-
igate these errors by dynamically adjusting the read reference voltage to compensate for the
threshold voltage shift. This mechanism is known as read-retry [28, 40]. Modern NAND
flash memory chips include several variants of read-retry, which use different techniques
to adjust the read reference voltage.
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3.2 Multi-Level Cell NAND Flash Memory Basics

In this section, the design and operation of planer multi-level cell (MLC) NAND flash
memory, one of the basic and commonNAND flash memory technologies, are explained.
Readers are also referred to previous studies for detailed information on the operation of
flash memory in [27, 29, 43, 44, 41, 45, 46].

3.2.1 Flash Memory Organization

NAND flash memory stores data within an array of flash cells. A cell consists of a single
floating-gate transistor, where the floating gate of the transistor can store some amount
of charge, as shown in Figure 3.1. The charge stored (i.e., trapped) within the floating
gate determines the threshold voltage at which the transistor turns on. Oxide layers are
placed above and below the floating gate to prevent the stored charge from leaking out of
the floating gate. To program a flash cell to a specific threshold voltage, a high voltage is
applied to the transistor’s control gate.
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Figure 3.1: A flash memory cell, which consists of a floating-gate transistor.

The threshold voltage can be programmed to a voltage level within a fixed range. This
fixed range is split up into multiple voltage windows, or states, where each state represents
a certain bit value. If the each flash cell stores a one-bit value (i.e., 0 or 1), it is called single-
level cell (SLC) flash memory. In order to provide higher storage density, NAND flash
memory manufacturers developed Multi Level Cell (MLC) technology. An MLC stores
more than twobits of datawithin a single cell. If a cell stores 2 bits of data, the voltage range
is split into four states (ER, P1, P2, and P3), with each state corresponding to one of the
data values 0b00, 0b01, 0b10, or 0b11, as shown in Figure 3.2. The number of states can be
further increased, such as eight states for a cell that stores three bits of data. In this thesis,
the term MLC specifically refers to NAND flash that stores 2 bits per cell, even though
MLC can technically include flash cells storing more than two bits. This focus allows for
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clearer explanations and more straightforward analysis throughout the work.
Due to variation during programming, the threshold voltage of cells programmed to the

same state is distributed across the voltage window for the state. This results in a threshold
voltage distribution of flash cells across the voltage range, as shown in Figure 3.2.
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Figure 3.2: Threshold voltage distribution of cells in MLCNAND flash.

ANANDflashmemory chip contains thousandsofflashblocks, which are two-dimensional
arrays of flash cells. Figure 3.3 shows the internal organization of a block. Each block con-
tains dozens of rows (i.e., wordlines) of flash cells. All of the cells on the same wordline
are read and programmed as a single group. MLC NAND flash memory partitions the
two bits of data in each cell across two separate pages (the unit of data programmed at a
time). As Figure 3.2 shows, the two bits stored within anMLC are referred to as the Least
Significant Bit (LSB) and the Most Significant Bit (MSB). The LSBs of all cells on one
wordline form the LSB page of that wordline (e.g., Page 1 ofWordline 1 in Figure 3.3), and
the MSBs of these cells form the MSB page (e.g., Page 4 of Wordline 1). For 2y-nm (i.e.,
20–24nm) NAND flash memory, a single page consists of between 4–16KB of data [47].
Within each columnof flash cells in the block, the sources and drains of the cells’ transistors
are connected in series to form a bitline. The cells on a bitline share a common ground on
one end, and are connected to a sense amplifier on the other end.
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.  .  .
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.  .  .
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Figure 3.3: Organization of a NAND flash block.
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3.2.2 Programming and Erasing Data

To program data into a flash cell, the cell needs to be in the erased state (i.e., no charge
shouldbe storedwithin thefloating gate of the cell). During aprogramoperation, electrons
are injected into the floating gate by applying a high positive voltage to the control gate (see
Figure 3.1 for a diagram of the flash cell). NANDflashmemory uses a procedure known as
Incremental Step Pulse Programming (ISPP) [48]. During ISPP, the high programming
voltage is applied for a very short period, known as a step-pulse. ISPP then checks the
current voltage of the cell. ISPP repeats the process of applying a step-pulse and checking
the voltage until the cell reaches its target threshold voltage. If the data that currently exists
in a cell needs to be overwritten, the data in the cell first needs to be erased. WithinNAND
flash memory, an erase operation is performed at block granularity (i.e., an entire block of
flash cells is erased at once).

Over time, as a cell is programmed and erased, the cell begins to wear out, reducing its
ability to reliably store charge within the floating gate [49, 50]. As this wearout is a result
of the number of times a cell is programmed and erased, the degree ofwearout is quantified
in terms of program/erase (P/E) cycles, as done inmany prior works [27, 29, 43, 44, 28, 51,
52, 53, 40].

3.2.3 Reading Data from NAND Flash

To read apage of data fromablock, the flash controller applies a read reference voltage to the
cell’s control gate. If the threshold voltage of a cell is lower than the read reference voltage,
the cell switches on; otherwise, the cell switches off. The read reference voltage used to read
a cell depends on which page is being read from the wordline. As shown in Figure 3.2, to
determine the LSB of a cell, the controller applies a single read reference voltage, Vb. If
the threshold voltage of the cell is lower than Vb, the cell is in either the ER state or the
P1 state, and holds an LSB of 1; otherwise, the cell is either in the P2 state or the P3 state,
and holds an LSB of 0. To determine the MSB of a cell, the controller applies two read
reference voltages,Va andVc. The two voltages allow the controller to determine if a cell is
in the P1/P2 states, and holds an MSB of 0, or if the cell is in the ER/P3 states, and holds
anMSB of 1.

Since multiple cells are tied together on a single bitline, it is necessary to ensure that the
cells not being read pass through the data being output from the cell intended for reading.
To achieve this, the flash controller applies a pass-through voltage to the control gate of each
unread cell (Vpass in Figure 3.2). The pass-through voltage is higher than any threshold
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voltage that can be stored within a flash cell, ensuring that a cell not being read is always
turned on during the read operation, allowing the data from the target cell to successfully
reach the sense amplifier.

3.2.4 Correcting Errors

Data stored within flash cells can often contain errors. An error is introduced when the
threshold voltage of a cell shifts outside of the voltage window to which the cell was orig-
inally programmed. There are a number of sources of errors within flash memory [27,
29], such as retention loss [51, 40], cell wearout [27, 28, 54], cell-to-cell program interfer-
ence [52, 53], and read disturb [43]. As flash cells scale down to smaller process technol-
ogy nodes, the total amount of charge that each cell can store decreases, which, in turn,
increases the susceptibility of the flash cells to errors [55].

In order to combat the errors contained within the cells (which is referred to as raw
bit errors), NAND flash memory makes use of Error Correction Codes (ECCs) [27, 56].
When data is programmed to a flash page, an ECC codeword is also written, which con-
tains enough redundancy to correct e bits out of the n-bit data [37]. e is referred to as the
error correction capability of the codeword. When the flash page is subsequently read, the
ECC codeword is sent alongside the data to the flash controller. Inside the controller, both
the data and the ECC codeword are input to the ECC logic, which checks for errors using
the implemented error correction algorithm. Based on the results of the algorithm, the con-
troller fixes the erroneous bits in the data, if any, and returns the corrected data value. If the
data read from the page contains no more than e raw bit errors, the controller successfully
returns correct data to the end user. If the data read from the page contains more than e
raw bit errors, full data correction is not possible, and the page data is said to be corrupted
(i.e., it is uncorrectable) [57, 58]. A block that contains corrupted data is marked by the
flash controller as a bad block [59], and is no longer used for storing data.

3.3 Bit Errors in Flash Memory During Forensic Analysis

Bit errors in flash memory can occur when the threshold voltage of a flash cell shifts. The
probability of occurrenceof such shifts has increaseddue to continueddevice scaling,which
allows manufacturers to increase the flash storage density [55]. The reliability of NAND
flash memory has been widely researched For a detailed overview ofMLCNAND reliabil-
ity, we refer the reader toZambelli et al. [60] andCai et al. [29]. Cai et al. investigatedmulti-
ple error factors onMLCNANDflashmemory, including program/erase errors, program
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interference errors, retention errors, and read errors. Digital forensic investigators should
assume that the majority of NAND flash memory devices they receive for analysis already
contain multiple errors at the time the device is obtained.

In this section, the twomajor sources of errors are investigated. Namely, the one that can
be introduced during digital forensic analysis, in addition to the preexisting errors within
the NAND flash memory device. First, a device is often stored unused for several days
or even weeks before investigators are able to examine its contents, due to issues such as
transport time or lab backlog [61]. During this time, additional retention errors can occur,
which is discussed in Section 3.3.1. Second, for devices where thermal-based chip removal
is required, a high temperature must be steadily applied to the device. This high tempera-
ture rapidly accelerates the effect of retention errors, as shown in Section 3.3.2.

3.3.1 Retention Errors

Retention errors in a flash cell occur when the charge stored within the floating gate of
cell transistor leaks. Due to the structure of the cell transistor (see Figure 3.1), where the
floating gate and substrate are separated by an oxide layer, a small amount of charge tun-
nels through the oxide, causing the leakage. This trend accelerates as the P/E cycle count
increases [27, 55], as repeated programming and erasing of a cell degrades the oxide layer,
which in turn allows charge to tunnel through the oxide layer at an increasing rate [40].
This tunneling occurs whether or not a NAND flash memory device is powered up, caus-
ing retention errors to accumulatewhen the device is stored unusedwith orwithout power.

Imagine a hypothetical case where a device was seized at a crime scene, and the device is
received for analysis at a digital forensics lab threeweeks later. Let us assume that this device
had been used over the course of three years, and that theNANDflashmemory within the
device endured 10 P/E cycles each day during these three years of usage, adding up to a
total of approximately 104 P/E cycles over its lifetime. Figure 3.4 shows the relationship
between the P/E cycle count and the retention error rate found by Cai et al. [27] for 3x-
nmMLCNAND flash memory chips. The figure demonstrates that the error rate grows
with (1) the P/E cycle count and (2) the retention age (i.e., the time elapsed since the data
was programmed). By comparing the curve labeled 1 Day with the curve labeled 3Weeks,
it is evident that the number of errors in the device increases by 38 times over the three-
week period between device seizure and lab delivery, while the device is being stored and
transported.
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Figure 3.4: Raw bit error rate of a 3x-nm NAND flash memory chip for different retention ages vs. P/E
cycle count. Reproduced from [27].

3.3.2 Thermal Effect on Error Rate

After the device is received by the digital forensics lab, investigators must extract the data
from the device. In many such cases, the device might have been damaged prior to seizure,
and cannot be accessed using software-based analysis techniques. In these cases, a chip-
off analysis (Section 2.2.1) must be performed, where investigators physically remove the
NANDflashmemory chips from the device and use hardware that can extract data directly
from the chips [26]. In order to remove the chips, investigators try to melt the solder con-
necting the chips to the PCB, at which point the chips can be pulled off.

Unfortunately, this thermal-based chip removal procedure greatly accelerates the num-
ber of retention errors that occur. Mielke et al. [62] states that whenNANDflashmemory
is exposed to high temperature, Arrhenius’ Law [63, 64] can be used to convert the effects
of high temperature into additional data retention time at normal operating temperature
for the memory. Let tb denote the amount of time that heat is applied to the chip, and tr
denote the equivalent retention age at the normal operating temperature. According to
Arrhenius’ Law, tr can be calculated as:

tr = tb · exp
[Ea
k
( 1
Tr

− 1
Tb

)]
(3.1)

where k is the Boltzmann constant, Tr denotes the normal operation temperature, and Tb

denotes the baking temperature (e.g., the high temperature applied to the chip during the
removal process). Ea is the activation energy, set to 1.1 eV according toMielke et al. [65].
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Following standard rework procedures used by electronicsmanufacturers [38], thermal-
based chip removal requires investigators to apply 250◦Cof heat for a duration of approxi-
mately twominutes. UsingEquation3.1, it is evident that applying this heat introduces the
same number of retention errors as leaving the NAND flash memory untouched at room
temperature for 833 years. Given that the amount of retention errors after only three years,
as shown in Figure 3.4, already introducesmore than 1000 times the number of errors into
NAND flash memory, compared to the number of retention errors after one day, it can
be extrapolated that 833 years’ worth of retention errors would be significantly and pro-
hibitively larger (over 105 times the number of retention errors after one day). Such a large
rate of errors could easily overwhelm the error correction capability of ECC algorithms
employed in modern flash controllers.

3.4 Read Retry Features in Flash Memory

As discussed in Section 3.3, the number of errors that exist in the raw data can increase by
several orders of magnitude even under best practices used in forensic investigation tech-
niques. If left unaddressed, the number of errors can quickly exceed the total error cor-
rection capability of the flash device, which in turn results in partial or complete data loss
during forensic data recovery. In this section, a mechanism that exists in modern MLC
NAND flash memory chips, called read-retry, is examined. It can be used as part of the
recovery process to mitigate the high number of errors introduced during data recovery.

Recall from Section 3.2 that errors occur when the threshold voltage of a flash cell shifts,
causing the read reference voltages to incorrectly interpret the state of the cell. Prior work
has demonstrated that retention errors are the dominant source of errors inMLCNAND
flash memory [27]. As a result, the threshold voltage of a flash cell tends to decrease as the
data retention age increases. To combat this decrease in threshold voltage, NAND flash
memorymanufacturers provide a read-retry operation, which can adjust the read reference
voltages used to read data from a cell, and thus potentially reduce the number of raw bit
errors in the data [28].

Figure 3.5 shows an example of a threshold voltage distribution that has shifted down-
wardsdue to charge leakageover retention time. For the sakeof simplicity, only theERstate
andP1 state distributions are shown in the figure. If the normal read reference voltages (i.e.,
Va, Vb, and Vc in Figure 3.2) are applied to the original distribution (i.e., before the distri-
bution shifted), the values of all cells in the distribution can be read out correctly. Once the
distribution shifts, the read reference voltages no longer fall in between the shifted distri-
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butions of each voltage state, but instead fall inside the distributions of some of the states.
For example, the default read reference voltage Va is used to distinguish between cells in
the ER state and those in the P1 state. As shown in Figure 3.5, after the distribution shifts,
some cells in the P1 state now fall to the left of Va. If the controller continues to use Va,
it incorrectly classifies these cells as being in the ER state. As a result, the default read ref-
erence voltages (Va,Vb,Vc) can introduce many raw bit errors when the threshold voltage
distribution shifts.
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Figure 3.5: Effect of read-retry operation on a shifted threshold voltage distribution (showing the distri-
butions for only the ER state and the P1 state).

The read-retry operation can be applied to the example shifted distribution to compen-
sate for the effects of the voltage distribution shifts caused by charge leakage. The basic
goal of the read-retry operation is to adjust the read reference voltages up or down with
the goal ofminimizing the errors that are introduced due tomisclassification. The optimal
read reference voltages (i.e., the voltages that are exactly in the middle of the distance be-
tween two neighboring distributions, which minimizes the number of errors) are referred
as Vopt

a , Vopt
b , and Vopt

c . One example read-retry mechanism can adjust the voltages down
one step at a time during a read operation, checking to see whether the number of errors
goes down with each subsequent step. Figure 3.5 illustrates how this example mechanism
works. Here, the read-retry mechanism tries to adjust the voltage used to distinguish be-
tween cells in the ER state and cells in the P1 state. The mechanism tries several voltages
(VRRn in the figure, where n represents the nth voltage tried). As shown in Figure 3.5, the
mechanism eventually finds a voltage (VRR3) where there are no cell classification errors
(because VRR3 falls between the threshold voltage distributions of the ER and P1 states).
Even thoughVRR3 is higher thanV

opt
a ,VRR3 can still be used to safely extract data from the

NAND flash memory without any errors.
Note that the read-retry operation itself does not always reduce errors. Furthermore,

the details of read-retrymodes are often proprietary and not always publicly available, mak-
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ing it difficult to learn whether a mode supports the ability to ensure that the number of
read errors never increases. While retention errors usually shift the threshold voltage of a
cell down, the threshold voltage of a cell can sometimes increase from its original state, as
a result of cell-to-cell interference that occurs during programming, reading, and erasing
[52, 53, 43]. The direction andmagnitude of the change in threshold voltage vary for each
cell, due to factors such as the retention age of the data in the cell, the number of read and
program operations performed to neighboring cells, and manufacturing process variation.
As a result, the threshold voltage distributions of each state do not shift uniformly, and
can overlapwith each other. Therefore, it is possible that simply shifting the read reference
voltage up or down (without checking the resulting number of errors) could unintention-
ally introducemore errors than the normal read that is donewith the default read reference
voltage. Therefore, read-retry based mechanism needs to be used with an error-correction
mechanism in order to make sure that the applied voltage is appropriate to reduce the bit
errors.

3.5 Experimental Evaluation of EnhancingReliability inChip-offAnalysis through
Read Retry

This section evaluates the reliability impact of chip-off digital forensic analysis on MLC
NAND flash memory chips. The effects of data retention on the Raw Bit Error Rate
(RBER) of twoMLCNANDflashmemory chips are examined. Subsequently, the impact
of applying high temperatures—simulating conditions used in thermal-based chip removal
during chip-off analysis—on the RBER is assessed. Finally, the changes in error rates with
the use of the read-retry mechanism are demonstrated.

3.5.1 Testing Methodology

To investigate the raw bit errors encountered during chip-off analysis (see Section 3.3.2)
and to evaluate the effectiveness of the read-retry operation (see Section 3.4) in mitigating
these errors, the effects of data retention and thermal-based chip removal were examined
using two new 2y-nm NAND flash memory chips from different manufacturers. These
chips are referred to as Chip A and Chip B. An Altera DE0 Field Programmable Gate
Array (FPGA) board [66] was used to design a controller that interfaces with the target
chips, following methods similar to those described by Cai et al. [67] and Breeuwsma et al.
[12]. Figure 3.6 illustrates the testing environment. The FPGA issues commands to and
receives data from the NAND flash memory chips. A USB microcontroller transfers the
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data from theNANDflashmemory chips to the PC,where it is collected and analyzed. All
testing was conducted at room temperature, unless otherwise specified.

FPGA
(Flash Controller)

NAND Flash
Memory Chip

USB 
Microcontroller

PC

Figure 3.6: Photograph of our test infrastructure used to extract data fromMLC NAND flash memory
chips.

The retention errors encountered during forensic examinations are first investigated.
Multiple blocks are randomly selected from the target chips, into which pseudo-random
data is programmed. This approach simulates the data scrambling used by modern flash
controllers [35, 36]. To assess the impact of retention errors on both relatively new and
heavily-used devices, the blocks are divided into subsets, with each subset undergoing a dis-
tinct number of Program/Erase (P/E) operations. The P/E cycle counts chosen for this
study are 10, 300, 1000, 2500, and 4000, covering a broad range of device wear. After
reaching the target P/E cycle count, reads are performed at specified retention ages to ana-
lyze the effect of retention age on the error rate. The retention ages studied include Day 0
(i.e., immediately after programming), Day 1, andWeeks 1, 2, 3, and 4.

The thermal-based chip removal procedure is then simulated by baking the chips after
the stored data reaches a specified retention age. The chips are exposed to a temperature
of 250◦C for twominutes using a heat gun, replicating the conditions used during chip re-
moval in chip-off analysis. Following the baking procedure, data read operations are imme-
diately conducted to measure the resulting error rate. The effects of this thermal exposure
are examined at three different retention ages: Day 0 (i.e., immediately after programming),
Week 1, andWeek 4.

One of the target chips (Chip B) has the read-retry operation implemented. For this
chip, multiple read operations were performed at every retention age, performing one read
for each available read-retry mode, and one read without read-retry. The read-retry modes
in Chip B does not have the ability to check or observe whether the number of errors is
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lower than that when the default read reference voltages are used. Eachmode simply shifts
the read reference voltage to a different fixed level.

3.5.2 Errors Introduced Due to Retention Time

Figure 3.7 shows how the RBER of the tested NAND flash memory chips varies with
(1) the P/E cycle count of the chip (i.e., how much the flash memory cells on the chip
have been worn out), and (2) the retention age of the data (i.e., the amount of time that
elapses after the data was written).
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Figure 3.7: Raw bit error rate at different data retention ages, for different P/E cycle counts.

In both chips, the RBER grows as the retention age increases. The Day 0 results in
Figure 3.7 show the number of errors that exist in flash blocks immediately after the data
is programmed to the NAND flash chips. The RBER increases over time, but the largest
increases occur soon after the the data is programmed. For example, the increase in RBER
is much greater during the first week (6.34 times for Chip A and 1.81 times for Chip B
at 300 P/E cycles, compared to Day 0 of each respective chip) than the second week (1.15
times for Chip A and 1.19 times for Chip B), and greater during the second week than the
third week (1.08 times for Chip A and 1.12 times for Chip B).
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Additionally, in both chips, the RBER grows as the P/E cycle count increases. In other
words, as a NAND flash memory chip is worn out, its susceptibility to raw bit errors due
to retention increases, for data with the same retention age. Note that the y-axis in Fig-
ure 3.7 is in log scale. A chip at a higher P/E cycle count (i.e., a chip with greater wearout)
accumulates retention errors at a much faster rate than a chip at a lower P/E cycle count
[40].

Furthermore, it was observed that while the RBER grows with both wearout and reten-
tion age, the overall RBER of the chip does not exceed the error correction capability of
ECC unless the P/E cycle count significantly exceeds the endurance guaranteed by manu-
facturers. For 2y-nm MLC NAND flash memory, a controller that employs BCH code-
words [30, 31, 32] for ECC can typically correct 40 bits of errors for every 1KB of data
[68] (i.e., it can correct errors for a RBER of up to 4.9 × 10−3). As the results from Fig-
ure 3.7 show, the overall RBER stays lower than this error correction capability through
a retention age of four weeks, for P/E cycle counts below 3000 cycles, which is the typical
endurance of commercial 2y-nmMLCNAND flash memory [68].

Within the experimental platform, a 70-byte BCH codeword is implemented for ECC
to provide the expected 40 bits of correction capability for each 1KB chunk of data. Note
that a data chunk is smaller than a page. When read operation is performed, the BCHcode-
word is used to determine how many of the data chunks cannot be successfully corrected
by ECC.

Table 3.1 shows the fraction of pages that contain at least one uncorrectable data chunk.
Even before chip-off analysis is performed, if a chip has been worn out significantly (e.g.,
after 2500 P/E cycles for Chip A), it can contain some uncorrectable pages even at a reten-
tion age of just oneweek. However, for less worn-out chips (e.g., a chip at 1000 P/E cycles),
none of the pages are uncorrectable even after a retention age of four weeks.

For perspective, a device can reach 2,190 P/E cycles if all of the pages in the NAND
flash memory chip are written to twice a day, every day, over a period of three years. It is
observed that once the chip exceeds the expected endurance of 2y-nmMLCNAND flash
memory (3,000 P/E cycles), the fraction of pages with uncorrectable errors grows rapidly
for ChipA. At 4000 P/E cycles, 64.9% of the pages in ChipA contain uncorrectable errors
after a retention age of only one week.

Even when the overall RBER stays lower than the ECC error correction capability, er-
rors in some pages become uncorrectable over time. For example, Chip A’s RBER at a
retention age of one week (i.e., seven days) at 2500 P/E cycles is 1.6× 10−3 (see Figure 3.7),
which is lower than the ECC error correction capability of 4.9× 10−3. At the same time,
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Table 3.1: Fraction of pages containing uncorrectable 1KB data chunks. A dash (—) indicates that no data
chunks are uncorrectable.

Chip Retention P/E Cycle Count
Age (days) 10 300 1000 2500 4000

A

0 — — — — —
1 — — — — —
7 — — — 0.9% 64.9%
14 — — — 9.6% 92.2%
21 — — — 14.4% 91.8%
28 — — — 15.9% 91.9%

B

0 — — — — —
1 — — — — —
7 — — — — —
14 — — — — —
21 — — — — 0.0039%
28 — — — — 0.0065%

0.9% of the pages in Chip A contain uncorrectable errors, as shown in Table 3.1. Similar
behavior is observed for Chip B, even though its overall RBER always remains below the
error correction capability.

It is thus concluded that, even if all of the data inside the device is refreshed immediately
before the device was confiscated, a worn-out device can quickly accumulate errors, and
some of those errors becomeuncorrectable over time. Therefore, in order to avoid data loss
due to uncorrectable data pages, data needs to be extracted from a NAND flash memory
based device at the earliest possible time after the receipt of the device.

By investigating the state of each cell at various retention ages, a number of trends in
the threshold voltage distribution shift can be characterized. A cell is defined as belonging
to the set [SO, SM] if it was originally programmed to state SO but is misread as state SM
when using the default read reference voltages. The graphs in Figure 3.8 show the fraction
of cells in Chip A that are in the set [SO, SM], for all neighboring (SO, SM) pairs, out of the
total number of cells originally programmed to state SO, across a range of retention ages.

From Figure 3.8, it is observed that when SM is a lower voltage state than SO, a greater
number of cells belong to [SO, SM] as the retention age increases. For example, after a
retention age of four weeks (i.e., 28 days), 0.20% of cells that were originally programmed
to the P2 state are misread as belonging to the P1 state (i.e., the cells are in the set [P2, P1]),
as opposed to only 0.02% after a retention age of one day. Regardless of the retention age,
when SM is a higher voltage state than SO, only a very small number of cells belong to the
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Figure 3.8: Fraction of cells in Chip A that were programmed to state SO but are misread as belonging to
state SM, out of the total number of cells originally programmed to state SO.

set [SO, SM] (e.g., [ER, P1]).
From these results, it is found that the threshold voltage of a misread cell tends to be

lower as the retention age increases. It can be concluded that the threshold voltage reduc-
tion, which occurs as a result of charge leakage from the floating gate of a flash memory
cell, is the dominant source of errors that are introduced by retention age.

3.5.3 Errors Due to Thermal-Based Chip Removal

The study now focuses on how the RBER caused by retention errors changes following
the thermal-based chip removal procedure used in chip-off analysis. Figure 3.9 shows the
RBER after the chip baking process is performed to emulate the removal procedure. Note
that the RBER data for Day 0 (i.e., immediately after programming), Week 1, andWeek 4
before baking is the same as the data shown in Figure 3.7.

It is observed that simply applying the heat required for chip removal causes the RBER
to increase significantly. When the heat is applied immediately after the data is written
(Day 0, After Baking in the figure), at 1000 P/E cycles, the RBER increases by 432× for
Chip A, and by 17× for Chip B, compared to the RBER before baking (Day 0, Before
Baking). When the heat is applied four weeks after the data is written at the same P/E
cycle count, (Week 4, After Baking), the RBER increases by 47 times and 54 times for
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Figure 3.9: Raw bit error rate before and after baking NAND flash memory chips.

ChipsA andB, respectively, compared to theRBERbefore baking (Week4, Before Baking).
Starting at 300 P/E cycles, the RBER exceeds the ECC error correction capability when
heat is applied to the chip.

The impact of the heat applied during chip removal can cause critical damage to the
data stored within the NAND flash memory chip that is being analyzed. Suppose that a
digital forensic investigator starts the chip-off procedure four weeks after a device has been
seized, and that theNANDflashmemory chip inside the device was only lightly used (e.g.,
300 P/E cycles) prior to seizure. Before applying heat, the RBER remains safely within the
error correction capability of contemporary ECC, as shown in Figure 3.9 (Week 4, Before
Baking at 300 P/E cycles), with a raw bit error rate of 1.1×10−4 forChipA and 1.4×10−4

for Chip B. However, after applying the chip removal temperature, the RBER exceeds the
error correction capability of ECC (Week 4, After Baking at 300 P/E cycles). The RBER
becomes 5.6 × 10−3 and 5.0 × 10−3 for Chip A and Chip B, respectively. At such a
high RBER, it is impossible to correct all of the errors in the data with the given ECC
error correction capability. Thus, the integrity of the data recovery is compromised. As a
point of comparison, The increase inRBERbetweenWeek 1 andWeek 4 before baking for
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both chips is extrapolated, to see how long it would take for the chips to reach the RBER
after baking if we had not baked the chips. Baking can increase the RBER by 113 times
for Chip A, and by 38 times for Chip B on average, while the increase in RBER between
Week 1, Before Baking andWeek 4, Before Baking is 1.43 times for both chips. Therefore,
applying heat to a chip induces approximately two to five years’ worth of retention errors
at room temperature.

Table 3.2 shows the percentage of uncorrectable data chunks after the chips are baked
(compare this to Table 3.1, which shows the uncorrectable data chunks before baking).
Nearly all of thepages storedwithin theNANDflashmemory containuncorrectable errors
after the baking process. At only 300 P/E cycles, 84.2% of the pages in Chip A and 83.6%
of the pages in Chip B contain uncorrectable errors, and all pages contain errors when we
reach 2500 P/E cycles for both Chip A and Chip B, when the heat is applied four weeks
after the data is written. Based on the analysis, it is concluded that the thermal-based chip
removal procedure, when left unmitigated, is prohibitively destructive, as it significantly
reduces the amount of data that can be successfully retrieved from NAND flash memory
during forensic recovery.

Table 3.2: Fraction of pages containing uncorrectable 1KB data chunks after applying heat to the chips. A
dash (—) indicates that no data chunks are uncorrectable.

Chip Retention P/E Cycle Count
Age (days) 10 300 1000 2500 4000

A 7 — 29.1% 99.8% 100.0% 100.0%
28 0.7% 84.2% 96.9% 100.0% 100.00%

B 7 — 78.1% 96.5% 96.9% 96.9%
28 — 83.6% 99.7% 100.0% 100.0%

3.5.4 Read-Retry Operation

The focus now shifts to evaluating the read-retry operation (see Section 3.4) and its ef-
fectiveness in addressing errors caused by the thermal-based chip removal process. This
analysis employs the read-retry mechanism available in Chip B, which features twomodes:
Mode A andMode B. *

Figure 3.10 illustrates the impact of the read-retry mechanism on the RBER as reten-
tion age increases, excluding the effects of the chip removal process. Across all P/E cycle
counts, while the RBER rises with retention age when using the default read operation,

*No documentation is available from the manufacturer on how the modes operate.
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Figure 3.10: Effect of read-retry modes on the RBER of Chip B as retention age increases.

it decreases with retention age when either of the read-retry modes is employed. How-
ever, the read-retry modes appear to be relatively basic: Mode A outperforms the default
read operation only at high P/E cycle counts. Under current conditions, where the RBER
through normal reading is still within the ECC error correction capability, varying the read
voltage via read-retry tends to increase the RBER. This is because the adjusted read voltage
is not optimal for the cells’ status in the target chip. Consequently, forensic investigators
may not benefit from the read-retry operation in this scenario. Onlywhen the chip is worn
out beyond the manufacturer’s endurance specification (e.g., at 4000 P/E cycles), Mode A
effectively reduces the RBER compared to the default read operation after a retention age
of two weeks (i.e., 14 days). Notably, the uncorrectable pages identified in Section 3.5.2
become correctable with the use of Mode A.

In contrast, when the baking process is applied to simulate thermal-based chip removal,
the read-retry modes, despite their somewhat unpredictable behavior, prove to be effective
in reducing the the RBER, as shown in Figure 3.11.
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Figure 3.11: RBERwith read-retry after Chip B is baked.

38



3

As detailed in Section 3.5.3, the baking process induces retention errors equivalent to
2–to 5 years’ worth of degradation. These errors arise from a significant downward shift
in the threshold voltage distribution of the flash cells. The two read-retry modes success-
fully adjust the read reference voltages to accommodate this shifted distribution, thereby
reducing the post-bakingRBERto a levelwithin the error correction capability of theECC
algorithm, even at high P/E cycle counts. For example, while theRBER forChip B at 1000
P/E cycles (1.5 × 10−2) is significantly over the ECC error correction capability after the
chip is baked, Modes A and B can reduce the RBER by 88.6% (i.e., to 1.7 × 10−3) and
94.6% (i.e., to 8.2× 10−4), respectively.

The read-retrymechanism significantly reduces thenumberofuncorrectable data chunks
after the chip undergoes the baking process. Table 3.3 illustrates the number of uncor-
rectable data chunks for data with a retention age of four weeks, comparing the default
read operation with the available read-retry modes. Two key observations can be made
from the table. First, at low P/E cycle counts (e.g., 1000 P/E cycles), Mode B can com-
pletely eliminate the uncorrectable data chunks introduced by baking. Second, at higher
P/E cycle counts, while the read-retry modes do not fully eliminate the uncorrectable data
chunks, they can substantially reduce their number. For instance, at 2500 P/E cycles, the
default read operation results in uncorrectable errors in all data chunks, whereas read-retry
Mode B reduces the number of uncorrectable data chunks to 49.5% of the total. These
results suggest that further improvements in the read-retry mechanism could be achieved
by refining the mode to enhance its effectiveness, potentially by adjusting the read voltage
more aggressively and improving communication with the flash memory controller.

Table 3.3: Fraction of pages containing uncorrectable 1KB data chunks after Chip B is baked, with and
without read-retry.

Read Mode P/E Cycle Count
10 300 1000 2500 4000

Default Read 0.0% 83.6% 99.7% 100.0% 100.0%
Read-Retry Mode A 0.0% 0.0% 12.1% 69.0% 99.1%
Read-Retry Mode B 0.0% 0.0% 0.0% 49.5% 90.6%

Therefore, it is recommended that digital forensic investigators utilize the read-retry
mechanisms integrated into NAND flash memory chips. These mechanisms can effec-
tivelymitigate the substantial number of uncorrectable errors that arise due to the exposure
of chips to extremely high temperatures during chip-off analysis.
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3.6 Conclusion

With the increasing popularity ofNANDflashmemory as a storagemedium, digital foren-
sic investigators are often required to perform data recovery from a growing number of
NAND flash memory-based devices seized during criminal investigations. This chapter
demonstrated that the amount of time that elapses between device seizure and data ex-
traction can increase the error rate of data stored within the device. If the target chip is
heavily worn, this error rate may exceed the capacity of the internal error correction mech-
anisms originally implemented by the NAND flash memory controller, leading to uncor-
rectable errors. Under normal operating conditions, the flash memory controller contin-
uously monitors the status of the data and proactively re-writes it to new locations before
errors become uncorrectable, thereby preventing data loss. However, once the device is re-
moved from normal operation, this corrective process stops, resulting in an increased risk
of uncorrectable errors over time.

Therefore, it is critical for digital forensic investigators to perform data extraction from
NAND flash memory-based digital devices at the earliest point of time after seizure of the
target device. In situations where thermal-based chip-off analysis is required, the high tem-
perature can further increase the error rate by more than two orders of magnitude, despite
the use of best practices taken from electronics rework procedures. It is demonstrated that
using the read-retry mechanism built into modernNAND flashmemory chips, instead of
simply using the default read operation when extracting data, provides a promising solu-
tion. The read-retry mechanism can significantly mitigate the error rate increase caused by
the thermal-based chip removal process.

In conclusion, when handling NAND flash memory for forensic analysis, data needs
to be extracted at the earliest possible time, and thermal-based chip-off should be avoided
when possible. Otherwise, the read-retry mechanism should be adopted as part of the data
recovery procedure in order to maintain the reliability of the extracted data.
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Data Recovery from

EmbeddedMultiMediaCard

In this chapter, data recovery procedures for embeddedMultiMediaCard (eMMC) are ex-
plored. eMMC is one of the “managed” flash memory devices widely used in modern dig-
ital devices as a storage medium. Consisting of both NAND flash memory and a flash
memory controller, eMMC optimizes data input/output between the host device and the
non-volatile memory through its standardized protocol. This integration makes eMMC
the preferred choice over rawNANDflashmemory formobile devicemanufacturers. The
standardized structure and protocol of eMMC also simplify forensic physical data acquisi-
tion compared to handling raw flash memory. However, its secure data purging features,
such as Secure Erase and Sanitize, present significant challenges for data recovery. In this
chapter, the detailed structures of multiple eMMC devices are investigated, leading to an
evaluation of advanced data recovery procedures.

4.1 Embedded MultiMediaCard in Mobile Devices and Its Impact in Forensic
Data Extraction

Recovering deleted data for forensic investigations was traditionally performed directly on
flash memory, as discussed in Chapter 3. However, as mobile devices have become smaller,
memory devices began to be integrated into single components alongwith their controllers.
Inmoderndigital devices, “managed” flashmemory is commonly used as the storage device.
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Thesemoderndigital devices include smartphones, tablets, navigation systems, and various
Internet of Things (IoT) devices. Examples of managed memory devices include Solid
State Drive (SSD), Universal Flash Storage (UFS), embedded MultiMediaCard (eMMC),
Embedded Multi Chip Package (eMCP), and UFS-based Multi Chip Package (uMCP).
Among these, eMMCs are currently the most widely used in mobile devices [69, 70, 71].

An eMMC consists of flash memory and a flash controller embedded into a single Inte-
grated Circuit (IC) chip. Its specifications are defined by the Joint Electron Device Engi-
neeringCouncil (JEDEC) [72, 73, 74]. The embeddedflashmemory stores the data, while
its operation ismanaged by the flash controller. Directly controlling flashmemory requires
variousdata optimizationprocesses, including error correction and crafting various vendor-
specific commands (seeChapter 3). However, with the integrated flashmemory controller,
the host system can manage the memory by issuing standardized commands. This allows
forensic investigators to acquire the entire image of the target device through the eMMC
simply by issuing standardized commands through its interface, resulting in an image that
has already been optimized by the flash controller.

While the standardized protocol simplifies physical acquisition compared to handling
raw flash memory directly, the structure of the eMMC presents two major challenges for
forensic data recovery. First, since the internal flash memory is inaccessible through the
eMMC interface, data equivalent to traditional physical data cannot be easily acquired.
The data obtained via the eMMC interface is the result of processing by the flash controller,
and the acquired image is typically in a format that the host system can directly recognize
[75]. As a result, even through chip-off analysis, forensic examiners can only obtain logi-
cal data, which includes file system data but excludes unallocated space and low-level raw
data. Second, multiple erase commands are implemented in eMMC specifications, such
as Secure Erase, which is designed to immediately erase data in the target addresses, along
with any copies. Once this command is executed, the erased data becomes completely in-
accessible through the eMMC interface, significantly reducing the forensic data recovery
rate.

Forensic data recovery typically involves accessing and carving unallocated data on the
storage media of the target device [76, 77, 78, 79, 80]. When data is logically deleted, it
is flagged as deleted by the system, but the actual data may remain on the storage media.
Forensic examiners often attempt to recover deleted data by acquiring a physical image of
the storagemedia. To acquire all the raw data on the storage device, forensic examiners can
turn to physical data extraction using chip-off analysis. Chip-off analysis against NAND
flash memory directly provides the entire dataset, offering a greater chance of recovering
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deleted data by examining the whole system data [69]. However, in the case of eMMC,
due to the presence of its internal flashmemory controller, the data acquired through chip-
off is equivalent to logical data, specifically file system data. Therefore, the acquired data
differs from the physical data discussed in Section 2.2.1 in Chapter 2.

The goal of this chapter is to access and recover data from the physical memory inside
the eMMC. Since the internal physical memory inside an eMMC is not accessible through
normal means, reverse-engineering the hardware structure of eMMCs is required. While
the hardware specification is standardized for managed flash devices, the internal structure
varies by model and manufacturer.

4.2 Embedded MultiMediaCard Structure

An eMMC is typically packaged into a BallGridArray (BGA) ICpackagewith dimensions
of 12mm×16mm, 12mm×18mm, 14mm×18mm, or 11.5mm×13mm. Figure 4.1a and
Figure 4.1b show the top and bottom views of an eMMC in the 11.5mm×13mm package,
respectively. Of the 153 ball connectors shown in Figure 4.1b, 30 are assigned to standard-
ized signals, including supply voltage and ground lines (annotated as VDD/VDDF and
GND in Figure 4.1c, respectively). The assigned pin names are shown in Figure 4.1c.

When controlling an eMMC, the host system communicates with the eMMC through
signal pins. The key signals required for communication are CMD (Command), CLK
(Clock), and DAT[0-7] (Data). The CLK is an input signal from the host system, while
CMDandDATare sharedbidirectional signals between thehost controller and the eMMC.
To control an eMMC, the host system sends a 48-bit command on the CMD line, with
each bit of the command sampled at the rising edge of the clock signal on the CLK line. In
response to commands from the host system, the eMMC sends a response on the CMD
line, which can be either 48 bits or 136 bits in length. When reading and writing data, the
data is transferred on the DAT lines after the command is acknowledged by the eMMC.
The data bus width is configurable to either 1 bit (using only DAT[0]), 4 bits (DAT[3:0]),
or 8 bits (DAT[7:0]). A total of 64 commands are available for use [73]. In addition to the
standard commands, manufacturers can implement vendor-specific commands, typically
for special operations such as smart report and RAM read/write [81].

An eMMC integrates flashmemory and a flashmemory controller into a single package,
as shown in Figure 4.2. The flash controller manages data read andwrite operations on the
non-volatile flash memory, interpreting commands received via the standardized eMMC
interface. Traditionally, flash memory and memory controllers have been packaged as sep-
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Figure 4.1: Example of an e·MMC in 11.5mm×13mm Package. An e·MMC can be controlled by 10
signals (CLK, CMD, DAT[7:0]). Each signal is assigned to one of the 153 ball connector pads that are visible
in 4.1b. The detailed pin assignment is shown in 4.1c

arate IC chips, requiring consumer device vendors to include both components in their
product designs. Additionally, flash memory control protocols varied between vendors
and products. The integration of two components simplifies device design by combining
storage and control functions into a single IC, reducing the need for separate components
and varied protocols. The following subsections delve into the detailed structure and func-
tionality of the flash memory and its controller within an eMMC.

4.2.1 Flash Memory Controller

As discussed above, the flash memory controller in an eMMC is responsible for manag-
ing communication between the host device and the flash memory. It optimizes this in-
teraction and handles read/write operations to the internal flash memory. In addition to
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Flash Memory
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Figure 4.2: The illustrated structure of an eMMC. eMMC interface signal pins are connected to the flash
controller, which is responsible for controlling flashmemory. Note that flashmemorymay consist of multiple
memory dies.

functioning as a FlashTranslation Layer (FTL) [82], the flashmemory controller performs
several other operations to enhance performance and ensure data integrity. From a digital
forensic standpoint, the following operations performed by the flash memory controller
are particularly significant, as they alter the original data before storing it in flash memory:

• ErrorCorrection: Asdiscussed inChapter 3, rawNANDflashmemory data is prone
to bit errors. To address this, flash memory controllers incorporate error correc-
tion capabilities, as specified by the flash memory vendors. These error correction
schemes and their parameters vary by vendor and model. When storing data, the
NANDflashmemory controller computes and storesErrorCorrectionCode (ECC)
alongside the actual data to detect and correct errors.

• Data Randomization: Data is stored in flash memory cells as electrical charge, ar-
ranged in pages and blocks (Section 3.2.1 in Chapter 3). Low entropy in data can
create imbalanced charge states between neighboring cells, increasing susceptibility
to bit errors. To mitigate this cell-to-cell interference, the flash memory controller
randomizes the data before storage [35]. This process avoids storing identical data
consecutively across flash memory addresses. The controller typically achieves data
randomization by computing theXORvalue between the data and pseudo-random
data, often generated using a Linear Feedback Shift Register (LFSR). The LFSR’s
structure and initial value vary by model.

• Wear Leveling: The bit error rate in flashmemory increases with the number of pro-
gram/erase cycles (Section 3.3.1 in Chapter 3). To prolong the memory’s lifespan,
the flash memory controller performs wear leveling by normalizing the write/erase
counts across physical memory addresses. It records logical addresses along with the
data to help translate physical addresses into logical image addresses.
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The original data from the host system undergoes these operations before being stored
in flash memory. Consequently, recovering the original data for digital forensic purposes
requires processing the extracted data. Typical recovery procedures include: correcting
bit errors with ECC, de-randomizing data using the LFSR, and sorting data using logical
block numbers. Identifying the necessary parameters for these operations often involves
mathematical analysis, as reported by Zandwijk [37].

4.2.2 Flash Memory

Flash memory stores the actual data after it has been processed by the controller, as de-
scribed in the previous section. Flash memory can typically be controlled by the signals
outlined in Table 4.1 [83].

Table 4.1: NAND flash memory basic signals

Pin Name∗ Input/Output Description
WP_n Input Write Protect
ALE Input Address Latch Enable
CE_n Input Chip Enable
WE Input Write Enable

RY/BY_n Output Ready/Busy
RE_n Input Read Enable
CLE Input Command Latch Enable

I/O[7:0] Input/Output Data Input/Output

∗“_n” after the signal namemeans that the signal is active low. Therefore enabled when the signal is pulled
down to ground.

Multiple CE_n and/or RY/BY_n signals may exist in one eMMC.Whenmultiple flash
memorydies * are present, theCE_n signal is used to select the target die, while other signals
are typically shared among all dies.

Flash memory operations are performed at two levels of granularity:

• Page Operations: Data is read from or written to flash memory in units called pages.
A page is a group of memory cells connected in serial, and its size varies by model,
typically ranging from 4K to 16K bytes in modern flash memory.

*A die is the individual physical piece of microfabricated semiconductor material.
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• Block Operations: Data erasure occurs at a larger unit called a block, which consists
of multiple pages. The number of pages per block can vary, typically including 128,
256, or 512 pages, depending on the flash memory structure.

Due to the difference in granularity betweenpage-levelwrites andblock-level erases, eras-
ing data in flash memory is not immediate. When the host system issues a data erase com-
mand, the data in the targeted block is not erased right away. This is because a block that
contains erased datamay also hold valid data in other pages. To erase data at the flashmem-
ory level, the flash memory controller first relocates any valid data from the target block to
another block, then erases the entire block. As a result, erased data may still remain in the
flash memory until the block is fully erased.

4.2.3 Erasing Data on Embedded MultiMediaCard

Several commands in the eMMC standards perform data erasure, allowing the host system
to delete data directly from the target eMMC [73, 72]. These operations typically involve a
sequenceof commands: defining the start and endaddresseswithCMD35 (ERASE_GRO
UP_START) andCMD36 (ERASE_GROUP_END), followed by executing the erase op-
eration with CMD38 (ERASE). The specifics of each operation are determined by the ar-
gument provided with CMD38:

• Erase: This command initiates a standard erase operation. No argument is provided
withCMD38, and the controller may delete the data immediately or at a later, more
convenient time.

• Secure Erase: Similar to the standard erase, but with CMD38 set to argument
0x80000000, the eMMC controller performs a Secure Erase operation immediately,
purging both the specified data and any of its copies.

• Trim: The Trim command uses CMD38 with argument 0x00000001, overwriting
the target data with zeros or ones. The operation can be executed immediately or
deferred, but it does not guarantee secure deletion, so it is often used with Sanitize.

• Secure Trim: This operation is more complex, requiring two stages. In the first step,
CMD35 and CMD36 mark the target addresses, followed by CMD38 with argu-
ment 0x80000001, flagging the data for trimming without immediate deletion. In
the second step, CMD38 with argument 0x80008000 completes the secure purge,
ensuring that all marked data and its copies are erased. Secure Trim is more efficient
than Secure Erase for multiple fragmented erase groups [84].
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• Sanitize: Introduced in eMMC version 4.5, the Sanitize command physically re-
moves data from the unmapped user address space. The operation begins bywriting
a non-zero value to the “SANITIZE_START” register of the extended CSD (Card
Specific Data) using the SWITCH (CMD6) command. Sanitize is recommended
in combination with Trim for secure data removal.

According to the JEDEC standard [73], eMMC version 4.51 and higher should utilize
Sanitize with Erase or Trim instead of Secure Erase and Secure Trim to ensure complete
removal of data from unmapped user address space.

4.3 Extracting Data from Flash Memory in Embedded MultiMediaCard

Since the physical data of an eMMC is stored in its internal flash memory, acquiring this
data allows for analysis of remnants after a data purge operation is performed through the
eMMC interface. The data recovery procedure typically follows the steps shown in Fig-
ure 4.3.

• X-ray 
• Logic Analyzer

Identification of internal flash 
memory interface

Raw data extraction from flash 
memory

• Flash memory reader

Error correction, data 
unmasking, physical address 

translation

Data carving for recovery 
• Forensic carving tools

• Custom reverse-engineering
• Commercial tools (ex. Visual NAND 

Reconstructor, PC-3000 flash, Flash 
Extractor)

Process Tools

Figure 4.3: Typical workflow of data recovery from inside an eMMC. Required processes are shown here
with popularly used tools.

For analyzing an eMMC whose structure is unknown, the procedure typically begins
with identifying the internal physical structures, such as physically locating the flash mem-
ory and the controller. This step is critical because it allows forensic examiners to under-
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stand the layout and connectivity of the components, which is necessary for subsequent
data extraction.

After identifying the physical structure, the next step is examining the logical signals to
ensure proper connection between the target device and a flash memory reader. This step
is crucial because the reader only functions correctly if the correct signals are connected to
the appropriate pins; otherwise, the commands issued by the reader cannot be understood
by the flash memory controller in the eMMC.

Once the raw data is extracted via the flash memory interface, the forensic examiner
must process the physical data to correct bit errors, unmask randomization, and re-order
the data to align with the logical addresses. This step poses specific challenges, as each
eMMC model has different setups for these operations, requiring detailed research and
analysis using reference devices to accurately retrieve the clear data.

4.3.1 Identifying Flash Memory Signal Connections

The first step in accessing the flash memory inside an eMMC is identifying the traces that
connect the signal lines of the flash memory dies. During the eMMC packaging process,
the flashmemory die and the flash controller die are connected to thePrintedCircuit Board
(PCB) through bonding wires, and then the device is encapsulated as an IC with epoxy
molds. An example of cross-sectional view of an eMMC is illustrated in Figure 4.4.

Figure 4.4: Image of the cross-sectional structural view of an eMMC.One or more flashmemory dies and
the flash memory controller die are connected to the PCB through bonding wires.

Themetal bondingwires and thePCBcanbe visually inspectedusingX-ray radiography.
Figure 4.5 provides an example of an X-ray inspection image of an eMMC, where only
dense materials such as metals are visible. In this X-ray image, taken from the top side of
the eMMC, the bonding wires appear as thin, straight lines. By tracing the PCB traces to
which each bondingwire is connected, an examiner can determine the connectors through
which the flash memory is accessed.
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Memory controller

Flash Memory

Bonding wire

Figure 4.5: X-rayed image of an eMMC. Bondingwires, traces in the PCB, electrical components, and ball
connectors are visible. The imaginary locations of the flash controller and flash memory are illustrated.

Caution is required when using X-ray for this purpose. X-ray exposure can potentially
damage the flash IC and affect the charge states of the flash memory cells, which might
compromise the stored data [85, 86]. Thus, X-ray inspection should be conducted with a
reference device for forensic purposes to mitigate potential damage.

Once the physical paths of the bonding wires have been traced, the signal names of each
pin can be determined using a logic analyzer. By monitoring the signal bus between the
flashmemory controller and the flashmemorywith a logic analyzerwhile the target eMMC
operates, an examiner can capture and analyze the commands and responses. Comparing
these results with known command and response patterns (such as chip ID reads) allows
the examiner to map each pin to its corresponding signal, as listed in Table 4.1.

Through these procedures, the connections to internal flash memory in eMMCs from
various manufacturers have been identified. Typically, flash memory signal pins are con-
nected to the pads visible on the bottom side of an eMMCpackage. The locations of these
flash signal pins across different eMMCmodels are detailed below.

• Samsung
Figure 4.6a shows the bottom view of Samsung KLMAG2GE4A.Notice that there
are multiple access pads at every corner of the package, which are not included in
the ball connector pads shown in Figure 4.1c. By tracing the internal connections of
the flashmemory, it is found that all the flash signal pins are connected to these non-
standard access pads. Specifically, the pads indicated in red squares are connected to
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the signals listed in Table 4.1.

Flash memory in Samsung eMMCs can typically be accessible through these non-
standard pads at the corners. The location and number of these non-standard pads
vary by product. Therefore, tracing flash signal pins is necessary each time a forensic
investigator analyzes a different Samsung eMMC model, along with “bus-sniffing”
through a logic analyzer to determine which signal pin connects to each pad.

*

(a) Samsung KLMAG2GE4A bottom view (b) Sandisk SDIN7DU2 bottom view

(c) Toshiba THGBMBG7D2KBAIL bottom view

Figure 4.6: eMMC bottom views from multiple manufacturers. Non-standard pins are exposed on Sam-
sung and SanDisk eMMCs.

• SanDisk
Figure 4.6b shows the bottom view of SanDisk SDIN7DU2. Non-standard access
pads surround the standard 153-pin connectors. The flashmemory connections can
be traced to these pads. It appears that SanDisk eMMC devices typically follow the
same flash memory footprint across all models. The access pads indicated with red
circles are connected to the internal flash memory.

• Toshiba
InToshiba eMMCs, non-standard access pads are typically covered by a coating layer
and are only accessible after removing the soldermasks. An example pinout is shown
in Figure 4.6c, where pins in yellow squares are connected to the internal flashmem-
ory. Access to the flash memory can be gained by exposing these pads. Addition-
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ally, flash memory in Toshiba eMMCs can also be accessed through the standard
153-pin connector pads. One of the standard connector pads (labeled as N2 in Fig-
ure 4.1c and highlightedwith a blue circle in Figure 4.6c), functions as amultiplexer
input, determining the operational mode of the card. If the N2 pin is connected to
the ground (as defined in [74]), the card operates as an eMMC. Conversely, if the
N2 pin is pulled high to the input voltage level, the card functions as flash memory.
Tracing the internal connections reveals that the pads indicated with red circles in
Figure 4.6c are used for accessing flash memory. In Toshiba eMMCs, the data bus
lines are shared between the eMMC protocol and the flash protocol.

4.3.2 Flash Memory Data Extraction

Once the locations of all the flash memory signal pins are identified, internal data can be
extracted by issuing the appropriate read commands through the identified access pads.
Specialized flash memory readers such as the NFI MemoryToolKit [87], Rusolut Visual
NandReconstructor [88], and Soft-Center Flash Extractor [89] enable examiners to access
the target flash memory effectively. These tools facilitate the extraction of raw data across
the entirememory region, providing a comprehensive insight into storeddata andpotential
remnants of previously deleted files.

4.4 Data Recovery from Embedded MultiMediaCard

To investigate the data recovery rate from raw flash inside an eMMC, two lab-controlled
tests were conducted. The first test involves data recovery from Android smartphones,
and the second evaluates the impact of eMMC data purge operations on the internal flash
memory. Detailed procedures for each test are discussed in this section.

4.4.1 Deleted Android Data Recovery

Sony Xperia Z2 was selected for data recovery experiments because it stores data in clear-
text within the storage media. Six devices, still containing user data, were acquired from
the second-handmarket. Each device employed a Sandisk eMMCwith themodel number
SDIN7DP2-4G as the main storage medium. The eMMCs were detached from the PCBs
of the devices, and their physical images were extracted through the eMMC interface.

Data extraction was performed using the Unix-based dd program after connecting the
target eMMC to a PC via an SD/MMC card reader. Following the data extraction from
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the eMMC interface, the physical data from the internal flash memory was extracted by
connecting flashmemory access pads of each eMMCto a flashmemory reader, as described
in Section 4.3.

The acquired flash data underwent error correction and data unscrambling to recover
the original plain-text data. To simplify the quantification of the data recovery comparison,
only SMSmessages were carved out from the acquired data using header information. The
number of recovered SMSmessages from the eMMC interface and those extracted directly
from the raw flash data were then compared.

Table 4.2 presents the total counts of recovered SMS messages from both the eMMC
image and the internal flashmemory data. The counts of SMSmessages recovered from the
eMMC represent themaximumnumber ofmessages recoverable through traditional phys-
ical acquisition performed via the eMMC interface. Comparing these numbers with those
recovered directly from the flash memory reveals that some recoverable data still remains
in the internal flash memory, not captured through the eMMC interface.

Furthermore, the data recoverable directly from the flash memory includes messages
that were either deleted by the user or by the system, as well as those residing in cache data
created by the internal flashmemory controller [90]. This indicates thatmoremessage data
is available on the flashmemory thanwhat is recoverable through the eMMC, highlighting
the limitations of accessing data solely through the host system interface.

Table 4.2: SMS data recovery from eMMC and the internal flash memory

Target SMS count on eMMC SMS Count on flash
A 41 116
B 19 47
C 20 105
D 4,723 4,866
E 82 118
F 1,174 1,540

The actual user data recovery rate is influenced by how each application software and
the operating system manage deletion operations. Thus, it is impractical to directly ex-
trapolate the user data recovery rate from this experiment alone. Notably, the numbers
reported do not account for the overlap betweenmessages recovered from the eMMC and
those retrieved from the flash memory, making it unclear how many additional messages
are genuinely recoverable.

Nevertheless, the data clearly indicates that exploring the internal flash memory yields
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more recoverable data than what is extracted through the eMMC interface alone. For tar-
get devices A, B, and C, the amount of user data recovered from the internal memory was
more than double that extracted through the eMMC. This result underscores that access-
ing the internal flash memory of an eMMC significantly enhances the likelihood of recov-
ering deleted data.

4.4.2 Data Recovery after Data Purge Operations

As discussed in Section 4.2.3, multiple data purge operations are defined within eMMC
specifications. To examine the impact of these operations on the physical data via the
eMMC interface, the same physical eMMC image was duplicated onto multiple eMMCs
from various manufacturers, followed by the execution of data purge operations through
the eMMC interface. Table 4.3 lists the eMMCs used for these tests. Devices from Sam-
sung, SanDisk, and Toshiba were selected, as these manufacturers’ eMMCs are frequently
encountered in forensic investigations. Each target eMMCwas assigned a unique number,
as shown in Table 4.3, and these numbers are used to refer to the devices in the remaining
sections of this chapter.

Table 4.3: List of Target eMMCs

Number Manufacturer Part Number Size (GB) eMMC version
1 Samsung KLM8G2FEJA-A001 8 4.41
2 Samsung KLM8G1WEMB-A001 8 4.5
3 Toshiba THGBM5G7B2JBA1M 16 4.5
4 SanDisk SDIN7DU2-16G 16 4.41
5 SanDisk SDIN8DE4-16G 16 4.5

A 4GB Android image data was used as the original dataset, extracted from one of the
phones used in the experiment described in Section 4.4.1. This image includes 27 parti-
tions, with the userdata partition being the largest, occupying 2.1GB. After confirming
the successful data transfer to the eMMC, data purge commands were issued against the
userdata partition, followed by the extraction of raw flash memory data. Secure Erase,
Secure Trim, and Sanitize combined withTrim operations were performed to evaluate the
impact of each data purge method.

For each test, the raw data extracted through the flash memory interface was compared
with the original userdata partition stored in the eMMC. This comparison was con-
ducted sector by sector to accurately assess the potential for data recovery. The number
of sectors in which data remained on the raw flash memory was counted. The physical sec-
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tor address of the userdata partition in the eMMC ranges from 0x31E000 to 0x747FDE,
consisting of 4,366,302 512-byte sectors. Out of these, 920,717 sectors do not contain
data, with the entire block being either all logical zeros or ones. To accurately count the
number of recoverable data-containing sectors remaining after the data purge operation,
the analysis focused on the 3,445,585 sectors that potentially contained recoverable data.

A custom eMMC programmer was developed using a Raspberry Pi [91], utilizing its
General Purpose Input Output (GPIO) pins to control all commands issued to the tar-
get eMMCs directly. The programmer’s initial task is to initialize the eMMC, setting it
up for communication. It then changes the eMMC’s operational status to a mode where
data transfer is possible. At this stage, the required data purge commands were executed.
Using this dedicated programmer guarantees that no unintended operations, such as write
commands, would be issued, thus preserving the integrity of the experiment. Additionally,
this development ensured that no operating system could interfere with the control of the
target chip, allowing for precise command execution.

Before each new experiment, the entire eMMC was overwritten with random data us-
ing the command dd if=/dev/random of=/dev/mmcblk0 to eliminate any influence
from residual data. After this, the initial data image was restored on the target eMMC us-
ing the dd program, followed by the execution of the necessary data purge commands. The
Rusolut Visual NANDReconstructor was employed as the flash memory reader through-
out the experiment to acquire raw flash memory data. Figure 4.7 shows the connection
setup between one of the target eMMCs and the flash memory reader.

Figure 4.7: Connection between the flash memory interface of a target eMMC and the flash memory
reader. The flash memory reader sends the read command to the whole data area of the target flash memory.

Examinationof thedata through the eMMCinterface revealed that the entireuserdata
partition had been overwritten with logical zeros following the erasure operations. Conse-
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quently, no user data could be recovered from the data acquired through the eMMC inter-
face after any of these purge operations were applied to the target partition. This implies
that if any of these purge operations hadbeenperformedon anAndroid device as described
in the previous section, the count of SMS messages recoverable from the eMMC, as listed
in Table 4.2, would be zero.

Data recovery rates from the internal flash memory, following each cycle of purge and
extraction, are presented in Table 4.4. This table lists the number of sectors recoverable
through the flash memory interface. The recovery rate is calculated against the total num-
ber of original data-containing sectors, amounting to 3,445,585 sectors.

Table 4.4: Recoverable Sectors after Erase Operations

Number of Recoverable Sectors after Different Erase Operations (Rate(%))
Target IC Secure Erase Secure Trim Sanitize

1 935 (<0.001 %) 926 (<0.001 %) NA (operation not supported)
2 3,425,560 (99.41 %) 3,425,032 (99.40 %) 3,424,652 (99.42 %)
3 3,444,362 (99.96 %) 3,444,223 (99.96 %) 3,444,424 (99.97 %)
4 126,033 (3.66 %) 125,966 (3.66 %) NA (operation not supported)
5 13,376 (0.0039 %) 11,376 (0.0033 %) 10,231 (0.0030 %)

Almost all the data subjected to Secure Erase remains accessible on target eMMC 2 and
3, allowing for recovery of the original userdata partition data. Despite the differing
definitions of Secure Erase, Secure Trim, and Sanitize, the outcomes of these data purge
operations were similar. Remarkably, even after the Sanitize command, which is deemed
the most secure data purge operation, a significant portion of the data remains intact in
the flashmemory of target eMMC2 and 3. Conversely, when Secure Erase is strictly imple-
mented, as observed in target eMMC1, 4, and5, themajority of the data is effectivelywiped
from the internal flashmemory. For these devices, the likelihood of recovering deleted data
is considerably reduced if the data purge operation is initiated from the host system.

During the data purge operations, the operation time was monitored by observing the
“busy” signal returned from the eMMC. Following the Erase command, the eMMC issues
a response and pulls the D0 line low while performing the operation. It was noted that
target eMMC 1 and 3 exhibited longer erase operation times compared to other devices.
However, there appears to be no direct correlation between operation time and data recov-
ery rate, as substantial data remains recoverable even after prolonged operation times on
target eMMC 3.
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4.5 Implications and Extensions of Embedded MultiMediaCard Data Recovery
in Digital Forensics

The experiments conducted reveal that securely erased data can often still be recovered
from the internal flash memory of certain eMMC models. Given the diverse range of
eMMC models produced by various manufacturers, extensive testing on a larger scale is
essential to develop a comprehensive database of data recovery rates for securely erased
eMMCs. Different chip models possess distinct flash controller architectures, which han-
dle internal flash memory data uniquely. Despite this variability, extracting raw data from
eMMCs remains a potent approach when a thorough investigation is required. This sec-
tion will interpret the results within the digital forensic context and explore other environ-
mental factors that could influence data recovery rates.

4.5.1 Forensic Interpretation and Application

Best practices for sanitizingdataduring anAndroid factory reset, such asusing ioctl(BLKSE
CDISCARD) ([92, 93]), typically involve issuing data purge commands such as Secure
Erase (or Secure Trim) or Trim combined with Sanitize, depending on the eMMC version.
Although these operations render the erased data inaccessible via the eMMC interface, the
results discussed in Section 4.4.2 suggest that a significant portion of the original data often
persists in underlying flash memory.

The JEDEC standard allows for “Erase” and “Trim” commands to be executed at the
controller’s convenience [73]. Assuming that the flash memory controllers in the target
eMMCsdefer actual erasure until systemdowntime, the target eMMCswere kept powered
on after data erasure operations, with clock signals active. Despite this, and even after wait-
ing over an hour and performing multiple power cycles, the data recovery rate remained
constant.

Additionally, Kimet al. suggests implementingTrim/Discard operations as background
tasks to reduce latency [71]. Commands to initiate these backgroundoperationswereman-
ually sent to the target eMMCs, but the resultswere unchanged. This indicates that all data
erasure operationswere completed by the time data recoverywas attempted, andno further
data deletion occurred later.

While this research confirms that the methodologies discussed are applicable to all de-
vices equipped with an eMMC, the decision to employ these techniques should be care-
fully considered. The process requires extensive reverse-engineering of both hardware and
software, making it both time-consuming and costly. Additionally, details about eMMC
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controller operations are proprietary and vary bymanufacturer, which adds complexity to
the process. Given the common backlog issues in digital forensic labs [94, 95], examiners
must judiciously evaluate whether the potential recovery of data justifies the significant
resources required.

4.5.2 Data Sanitization Issues

The lack of proper data sanitization in the resale of storage devices is a significant concern.
According to a report by Blancco and Ontrack [96], 42 percent of storage devices sold in
the second-hand market contain recoverable data. Moreover, Schneider et al. [97] high-
lights that flashmemory chips are sometimes recycled from one device to another and sold
as new low-cost devices. Frequently, these repurposed memory devices retain data from
their previous applications, posing a risk of exposing sensitive information to unintended
recipients.

Memory ICs, sourced from a wide array of devices such as Android devices, smart TVs,
car navigation systems, and other IoT devices, are often recycled. After their intended life-
cycle, these digital devices are processed as e-waste, their memory ICs are dismantled from
circuit boards, and subsequently remounted onto “new” devices.

In the case of an eMMC, the device’s hardware usage history can be examined through
the “smart report”, accessible via vendor-specific commands. This report allows the sys-
tem host to assess the health status of the target, providing insights into the internal flash
memory’s condition, including the number of bad blocks and the count of program/erase
(P/E) cycles. Figure 4.8 shows a smart report from an eMMC mounted on a new USB
thumbdrive. The report reveals that themaximumerase count for the flashmemoryblocks
reached 196, with an average erase count of 140 across all blocks, indicating the device had
been previously used.
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Figure 4.8: Smart report of the eMMCmounted on a USB thumbdrive sold as new

As demonstrated in Section 4.4, hidden data can still be extracted from the flash mem-
ory within eMMCs, underscoring that the prevalent practice of memory recycling could
lead to significant information leakage. Potential attackers could exploit recycled memory
devices to recover sensitive data, highlighting the need for robust data sanitization practices.

4.5.3 Other Factors Effecting Data Recovery Rate

While the experimental data recovery rate from eMMCs is promising for forensic analysis,
various environmental factors must be considered when attempting data recovery from de-
vices equipped with eMMCs. The actual operating conditions can significantly influence
the recovery rate. Key operational factors include:

• Available Physical Space in the Flash Memory: Consider a scenario where the
eMMC in a target device is nearly full, limiting space for large new files. To accom-
modate new data, existing files may need to be deleted. Under such conditions, the
flash controller is compelled to erase old data from the memory, potentially reduc-
ing the recovery rate of erased data. To test this, all blocks of the target eMMCswere
overwritten with logical zeros. Subsequent data extraction revealed that only a frac-
tion of the old data (less than 0.1%) remained on the flashmemory after overwriting.

• Encryption: When data is encrypted before storage on an eMMC, it remains en-
crypted in the flashmemory. Consequently, even if the original data is reconstructed
from remnants in the flash memory, decryption is necessary. This process can be
complex unless the original data is recovered error-free and the decryption method
is known.
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• Data Fragmentation: In contrast to the experiments discussed in Section 4.4.2,
where a complete imagewas copied to the eMMCjust before data erasure, real-world
digital device usage involves continuous data write and erase cycles. Each update to
an existing file results in new data being written to a new physical address while leav-
ing the old data at the original location. This process leads to data fragmentation
across multiple locations within the flash memory. Although recovering complete
files from fragmented data may be challenging, investigators might still retrieve use-
ful information, such as metadata, from these fragments.

4.6 Conclusion

This chapter has demonstrated that data erased from eMMCs can often still be recovered
by directly extracting it from internal flash memory. The process of transforming flash
memory data into error-free, clear text involves intensive investigations due to the varied
internal structures and technologies embedded in eMMCs by differentmanufacturers and
across models.

Despite these complexities, raw flashmemory data can be extracted from eMMCswith-
out compromising their physical integrity or functionality. The methodologies described
herein are applicable across a broad spectrum of digital devices, not limited to but includ-
ing factory-reset Android devices. This reveals that data deleted by host systems can persist
on internal flash memory of eMMCs in a recoverable state.

Furthermore, these findings highlight the necessity for enhanceddata sanitizationproto-
cols, particularly in environmentswhere the secure deletion of sensitive data is critical. The
persistence of recoverable data on eMMCs despite purported secure erasure methods calls
for ongoing improvements in storage technology and data management practices. Future
research should continue to explore advanced sanitization techniques in newer memory
technologies.
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Exploiting Replay ProtectedMemory Block

Authentication in Trusted Execution
Environment

EmbeddedMultiMediaCard eMMC provides a protected memory area known as the Re-
play Protected Memory Block (RPMB), which stores important data in an authenticated
manner to protect host devices like smartphones from unauthorized access. Modifying
RPMB data requires a pre-shared authentication key, preventing unauthorized users from
altering the stored data. On the host device’s processor, this pre-shared key is generated and
utilized exclusively within a Trusted Execution Environment (TEE), restricting attackers
from accessing it. This chapter examines the use of the eMMC RPMB in an Android de-
vice and demonstrates howRPMB-based security features can be compromised through a
combination of software and hardware reverse engineering.

5.1 Replay Protected Memory Block

TheReplay ProtectedMemory Block (RPMB) is a specialized hardwarememory partition
specified by JEDEC standards inmodern storage devices such as embeddedMultiMediaC-
ard (eMMC) and Universal Flash Storage (UFS) [73, 98]. It is designed to store data in
an “authenticated and replay protected manner,” securing the stored information against
unauthorized access and modification [98].
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Authenticationwithin theRPMB is performed through a shared secret key between the
eMMC and the host system. This authentication key is securely programmed into both
the host system’s processor and the eMMCat themanufacturing stage, prior to the device’s
shipment from the factory.

Writing data to the RPMB requires authentication via a cryptographic hash function,
specifically a keyed HashMessage Authentication Code (HMAC) using SHA256. Figure
5.1 illustrates the fundamental process of accessing the RPMB. The host device issues an
RPMB command packaged within a data frame structure. This data frame includes the
data intended for writing, the address, and the write counter. Using the pre-shared key,
the host device calculates the HMAC over the data frame and sends both the data frame
and HMAC to the target eMMC.

Upon receiving the data, the eMMC first checks the write counter, then verifies the
HMAC using the pre-shared key. If the calculated HMACmatches the received HMAC,
the eMMCwrites the data to theRPMBpartition and increments thewrite counter by one.
The write counter, a security feature of the eMMC, tracks the total number of successful
authenticated write operations to the RPMB. This counter is securely stored within the
eMMC in a location inaccessible via the external interface, protecting it fromunauthorized
manipulation.

The write counter provides protection against replay attacks. If it is not implemented,
an attacker can monitor the communication between the host and the eMMC, and then
reproduce the same communication at a later time, allowingmodification of data stored in
the eMMC.

SHA256

Host Device

Write data

Write counter

Address

HMAC

eMMC

SHA256

HMAC

RPMB

=

Write counter =

Write data

Write counter: +1

Figure 5.1: RPMBwrite sequence block diagram.

In modern embedded devices, because RPMB authentication relies solely on the confi-
dentiality of the pre-shared key, a secure component such as a Trusted Execution Environ-
ment (TEE) takes ownership of the RPMB [99].
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By issuing anRPMB read request command, anyone can read the content of theRPMB
data. Therefore, the RPMB is not suitable for storing confidential information. Rather,
the RPMB is commonly used to store information that is immutable for a normal user.
Example information include version information used in anti-rollbackmechanisms [100],
cryptographic public keys [101], and the bootloader lock state [102].

Modification of this type of information by an unauthorized attacker can result in an
increased attack surface, or in some cases, a fully compromised system. Anti-rollbackmech-
anisms are also often used to prevent software components from being downgraded to a
vulnerable state [103, 104].

5.2 Dissecting the Use of Replay ProtectedMemory Block on an Android Device

5.2.1 Target Device

The Blackphone 2 was selected as the target device to investigate its use of RPMB. The tar-
get device was in a wiped state due to multiple incorrect password attempts, and attempts
to restore the original pre-wipe filesystem data failed to decrypt the user data successfully.

Testingwas conducted on a reference device to validate the occurrence of this issue. The
entire filesystem image of this device was acquired before triggering the data wipe and sub-
sequently restored. Although the device booted normally, entering the correct password
resulted in a notification stating that while the password was correct, the data could not be
decrypted, as depicted in Figure 5.2.

Figure 5.2: Themessage shown on a test device after triggering data-wipe and restoring the original filesys-
tem image. The devices says the data is corrupt.

Introduced in 2015, the Blackphone 2 is designed with a focus on security and privacy.
It features theQualcommSnapdragon 615 (MSM8939) System on aChip (SoC) and runs
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on “Silent OS,” a modified version of the Android operating system. The device employs
Full Disk Encryption (FDE) to protect user data, relying on both the user’s password and
a hardware-bound key to derive the necessary decryption key. The notification displayed
on the reference device post-data restoration suggested that the Blackphone 2 employs an
anti-rollback counter stored in the RPMB. This counter is a security mechanism designed
to prevent the restoration of data backups after a device wipe, effectively blocking efforts
to recover sensitive information by potential attackers.

5.2.2 Qualcomm Secure Execution Environment

Qualcomm’sTrustZone technology facilitates the separation of a non-secure operating sys-
tem (e.g., Android) and a secure operating system, such as Qualcomm Secure Execution
Environment (QSEE), on the same device. TrustZone technology is implemented in accor-
dance with the “Advanced Trusted Environment: OMTP TR1” standard [105], which
incorporates mitigations against both software and hardware attacks.

The non-secure operating system operates in the Rich Execution Environment (REE),
or ‘normal world,’ while the secure operating system runs in the Trusted Execution Envi-
ronment (TEE), or ‘secure world.’ This separation ensures that certain operations can be
securely performed even if an attacker compromises the Android operating system. The
secure operating system has full control over the device, whereas the normal operating sys-
tem can only access the non-secure memory assigned to it. This separation is enforced not
only by the Memory Management Unit (MMU) in the application processor but also on
the data bus itself by the TrustZone Address Space Controller (TZASC) [106].

Code executed on the application processor (AP) operates at different privilege levels,
referred to as Exception Levels (ELs) by ARM. These levels, which dictate the degree of
access and control over the processor, are used in both the REE and the TEE as follows:

• EL0: User space

• EL1: Supervisor

• EL2: Hypervisor

• EL3: Secure Monitor

The Secure Monitor facilitates message relay between the REE and the TEE. Only the
Linux kernel running at EL1 or the Hypervisor in EL2 are permitted to send messages to
QSEE through the SecureMonitor. Consequently, normal applications can only commu-
nicate with QSEE through the Linux kernel. Figure 5.3 illustrates the flow of messages
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from the Linux kernel in the REE to QSEE in the TEE. On the target device, all critical
functionalities related to key derivation and user authentication are implemented within
the QSEE kernel itself.

Figure 5.3: A simplified overview of the TZ architecture. Left: REE (Green) Right: TEE (Red)

5.2.3 Android Volume Daemon

The Android Volume Daemon (vold) is responsible for mounting storage media on An-
droid devices, including the userdata partition. The functional process of vold was in-
terpreted by analyzing publicly available code repositories that are similar to the operating
system of the target device [107]. These insights allowed for a deeper understanding of
vold’s operations in relation to device encryption and user authentication, which is de-
picted in Figure 5.4.

Upon user authentication, vold initiates communication with the QSEE via the
libQSEEComAPI library, which provides a secure communication channel through the
Linux kernel. This interaction involves sending a request that includes the user password
as one of the arguments. The request is processed through a Secure Monitor Call (SMC),
managed by the Secure Monitor. Upon receipt, QSEE evaluates the request and returns a
response code based on the password attempt status, detailed in Table 5.1.
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Figure 5.4: A simplified overview of the vold function.

Table 5.1: Response code fromQSEE after password attempt

Return value Decimal Meaning
0xFFFFFFF6 -10 Max. password attempts reached
0xFFFFFFF9 -7 Invalid password attempt

0 0 Correct password

If the password verification is successful, QSEE configures the decryption key within
the crypto engine of the SoC, ensuring that the Application Processor (AP) cannot access
the decryption key directly. All interactions concerning the crypto engine are confined to
the QSEE environment. The decryption of the userdata partition only proceeds after
the correct decryption key has been securely established.

5.2.4 RPMB Usage in User Authentication and Key Derivation

Further software reverse engineering identified the use of RPMB on the target device. The
QSEEuses a structure knownas the keystore to securely store sensitive security information,
including the FDEkey and the count of failed password attempts. Locatedon aproprietary
partition named SSD in the Android filesystem, the keystore’s data is encrypted with a key
derived from a hardware-bound key. If the keystore is not pre-loaded in memory, it is first
read from the device’s memory storage. QSEE then accesses the RPMB data, using the
HMAC included in the RPMB response to validate the stored data. Each entry of the
keystore includes an HMAC that ensures the integrity and authenticity of the entry data.
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TheHMAC is computed over the encrypted data. Authentication fails if theHMACdoes
notmatchdue to an incorrect anti-rollback counter or awrongpassword. When successful,
authentication allows the encrypted entry data to be decrypted using a key derived from
the hardware-bound key.

When incorrect passwords are entered more than thirty times, the SoC sends the value
0xFFFFFFF6 (Table 5.1)which triggersQSEE to remove theFDEfromthekeystore. QSEE
then re-encrypts the keystore and writes it back to the flash memory. At the same time, it
increments the anti-rollback counter and updates this value in the RPMB. This process
ensures that attackers cannot revert the keystore data to an earlier version, as the entries it
holds can no longer be authenticated due to the updated counter. Therefore, the decryp-
tionmechanismof the target device relies on data stored in theRPMB.Consequently, even
if an attacker restores the entire Android OS image to the eMMC, the RPMB remains un-
changed, resulting in a mismatch in the key-derivation process and failing the decryption
of the user data partition. As noted, the RPMB data cannot be modified without the au-
thentication key, reinforcing its role in securing user data.

5.2.5 Hardware Reverse Engineering for Replay Protected Memory Block Key
Extraction

At this point, it becomes evident that manipulating the data stored in the RPMB is neces-
sary to roll back the state of the target device, necessitating hardware-level reverse engineer-
ing of the eMMC. The target device utilizes a Hynix eMCP H9TQ26ADFTMCUR for
storage, which integrates eMMC and DRAM into a single package. For the remainder of
this chapter, the integrated assembly of the flashmemory controller and flashmemory will
be referred to as eMMC, unless otherwise specified.

Following the procedures detailed in Section 4.3 of Chapter 4, the internal structure of
the target eMCP was examined using X-ray radiographic inspection. Several eMCPs with
the same part number as the target device were acquired to facilitate reverse engineering
efforts. Figure 5.5b displays the X-ray image of the target chip, with annotations marking
each silicon die’s location. Electrical path tracing revealed that the flashmemory controller
and DRAM are connected to the standard interface, denoted by the silver connector pads
in Figure 5.5a. The internal flash memory dies are linked to gold access pads [100]. The
pin-out for those access pads were identified as indicated in Figure 5.5c.

Tomonitor the flash controller of the eMMCbehavior during the programming of the
RPMB authentication key, the access pads were connected to a logic analyzer, as shown
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(a) Bottom View (b) X-ray Inspection

(c) FlashMemory Pinout

Figure 5.5: Hynix H9TQ26ADFTMCUR visual observation

in Figure 5.6. This setup captured the communication between the flash memory con-
troller and flash memory during the authentication key programming phase. Using the
mmc-util program with the rpmb write-key option [108], a test key data sequence
“12345678901234567890123456789ABC” (in ASCII) was programmed into a reference
eMCP chip. The logic analyzer was configured to initiate capture when the Command
Latch Enable (CLE) pin of the flash memory was activated.

The captured results, depicted in Figure 5.7a, showmultiple communications between
the controller and flash memory. Initially, the controller issues several read commands
to different addresses in the flash memory, presumably to check the current status of the
RPMB. Following this, the controller begins writing values to flash memory. For instance,
in the area highlighted in red in Figure 5.7a, the issued command becomes apparent, as
detailed in Figure 5.7b. First, with the Command Latch Enable (CLE) pin activated, com-
mand 0x80 is issued followed by the address data with the Address Latch Enable (ALE)
pin activated. According to the ONFI standard [83], command code 0x80 is used for
a page program operation, which in this case is targeted at flash memory page address at
0x0E00000000, as illustrated in Figure 5.7c.
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Figure 5.6: Hardware setup to monitor communications between flash memory and the flash memory
controller.

(a) Communication between the flash
memory controller and flash memory in the

eMMC
(b) Zoomed in flash memory command captured
during the authentication key programming

(c) Data write command timing defined by ONFI [83]

Figure 5.7: Captured communication between the flash memory controller and flash memory

5.2.6 Physical Memory Dump and Authentication Key Extraction

To ascertain the specific data written to flash memory during the programming of the au-
thentication key, the access pads traced from flash memory (Figure. 5.5c) were connected
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to a flashmemory reader. The reading operationwas performed using the Single Level Cell
(SLC)mode facilitated byRusolut Visual NANDReconstructor [88]. Due to the reliabil-
ity concerns associated withMLC flashmemory as discussed in Chapter 3, manufacturers
nowadays enable SLC mode in MLC flash memory. In SLC mode, each cell stores only
one bit of data, enhancing reliability, especially for crucial system data. The operations in
SLCmode are executed via proprietary commands, and thus, their implementation varies
across different manufacturers.

The rawflashmemory data extracted is initiallyXORedwith a scrambling pattern. This
pattern was derived from a reference device configured with all plain-text data set to 0x00.
While it is possible to reverse-engineer the scrambling pattern [37], for this experiment,
identifying a single page of the pattern sufficed to extract the necessary key information.

Using the obtained scrambling pattern, the plain-text data was successfully recovered.
Upon analysis of the de-scrambled data, it was discovered that the authentication key data
is stored in plain text following the [PASS] flag, as depicted in Figure 5.8.

Figure 5.8: RPMB key stored plain-text in flash memory.

5.3 Restoring Android Device State by Exploiting Replay Protected Memory
Block

The reverse engineering efforts demonstrated that the RPMB data is utilized to store the
anti-rollback counter, and that theRPMBauthentication key can be extracted by accessing
flash memory in the eMMC. Upon obtaining the RPMB authentication key, the RPMB
content can be modified, effectively compromising the anti-rollback protection.

To validate these findings and apply them in practical scenarios, an experiment was con-
ducted on a Blackphone 2 involving an arbitrary data-wipe and subsequent data restora-
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tion. The data wipe was simulated by making automated incorrect password entries until
the device initiated a data wipe, duringwhich datamodificationswere carefullymonitored.

5.3.1 Device Setup

Hardware Setup

To facilitate the required eMMC read and write operations, specific hardware modifica-
tions were necessary on the target device. Initially, the eMCP chip was detached from the
PCBusing a heat gun tomelt the underlying solder between the eMCPchip and the circuit
board of the target device. This step was crucial to make the flash memory access pads of
the eMCP accessible.

Subsequently, the eMCP was connected to a Linux-based computer via an eMCP-SD
adapter to examine its contents. The output of the dmesg command confirmed that the
target eMMCwas recognized asmmc0, containing four physical partitions:

• mmcblk0
The main partition, with a total size of 29GB, partitioned into 32 logical partitions
consisting Android filesystem.

• mmcblk0boot0
4KB in size, all bytes were 0x00.

• mmcblk0boot1
Another 4KB partition, also entirely filled with 0x00.

• mmcblk0rpmb
The RPMB partition, sized at 4KB.

Running mmc-utilswith the rpmb read-counter option indicated that the RPMB
had been written 155 times. The dd program was utilized to perform image acquisition
from partitionsmmcblk0, while mmc-utils with the rpmb read-block option was exe-
cuted to access the RPMB contents. These images were preserved as baseline data.

The flash memory access pads of the target chip were then connected to a flash mem-
ory reader to extract the RPMB authentication key, located at the same address as in the
reference eMCP as detailed in Section 5.2.6.

To monitor data modifications on the RPMB during the data wipe routine without
necessitating a chip-off procedure, essential signals controlling the eMMC were extended
while the eMCPwas remounted onto the PCB. Specifically, the CLK, CMD, andD0 lines
of the eMMCwere extended from the traces on the PCB using thin wires.
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Software Setup

The software running on the target device was also modified in order to automate the data
wipe process. Root privileges are required to enable communication with QSEE through
the SecureMonitor, as discussed in Section 5.2.2. These privileges are accessible onlywhen
unsigned code is executable. A publicly available vulnerability allows for direct modifica-
tion of the bootloader to change the device’s state to unlocked [109], thereby permitting
the execution of arbitrary code with EL0 or EL1 privileges.

A modified boot image initiating an Android Debug Bridge (ADB) shell with root
privileges was uploaded to the target device using the fastboot mode. This configuration
granted root access on the device and facilitated communication with QSEE from user
space through ioctl() calls.

5.3.2 Initiating Data Wipe

By connecting to the device via ADB, multiple password attempts were made using the
command vdc cryptfs checkpw <password>. After 30 failed attempts, the wipe rou-
tine in QSEE was triggered, prompting the device to reboot and begin erasing data.

After the target device completed the wipe routine, the physical image of the eMMC
including the RPMB partition was extracted through the use of extended eMMC signal
traces. Figure 5.9 shows the difference in data stored in the RPMB partition before and
after the data wiping routine. The value stored at offset 0x20C has been incremented by 1
from 0x10 to 0x11 after the device was wiped.

(a) RPMB data before user data being wiped.

(b) RPMB data after user data being wiped.

Figure 5.9: RPMB data comparison

The preserved baseline data from the mmcblk0 partition, extracted as outlined in Sec-
tion 5.3.1, was restored to the eMMC.After booting the device and entering the password,
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the message shown in Figure 5.2 appeared (Section 5.2.1), indicating that the data could
not be decrypted. This behavior aligns with the reverse engineering findings, confirming
that the decryption operation fails due to a mismatch in the RPMB data.

5.3.3 Restoring Data

To recover the original state of the target device, the original data onmmcblk0 was restored
again. Additionally, using the extracted RPMB authentication key, the RPMB partition
data was restored to the state acquired in Section 5.3.1. Upon booting and entering the
password, the device successfully decrypted the user data, making the original data accessi-
ble. Confirming that incorrect RPMB data hindered the restoration of the original target
device to its pre-wipe state, the same restoration procedures were applied to the original
target device, which remained in a wiped state. Since no original RPMB data was avail-
able, restoration involved decrementing the anti-rollback counter at offset 0x20C by one
from its current state, aiming to align it with the expected value stored in the encrypted
SSD partition of mmcblk0. It was observed that booting the device after only restoring
mmcblk0 data resulted in the value at offset 0x20C incrementing by one. Due to multi-
ple restoration attempts, this anti-rollback counter turned out to be increased from 0x0A
to 0x14, necessitating multiple efforts to incrementally decrease this value with each data
restoration attempts. After multiple operations, the state of the original target device was
successfully restored to its pre-wipe condition.

Recall from Section 5.1 that the RPMB tracks successful authenticated write opera-
tions through the write counter, using it during authentication to ensure data integrity.
By rewriting the RPMB partition data with the RPMB authentication key extracted from
the eMMC, the write counter value in the target eMMC was also incremented. Despite
this, the modifications went undetected by the SoC, allowing the target device to be re-
stored to its pre-wipe state successfully. The device booted without issues, and the user
data was successfully decrypted through correct password.

5.4 Attack Mitigation

5.4.1 Safer Storage of the Replay Protected Memory Block Authentication Key

Asdemonstrated in Section 5.2.6, theRPMBauthentication key can be extracted by access-
ing the internal flashmemory of the target eMMC. This key is stored in plain text without
any obfuscation or read protection, rendering it accessible to attackers. Although the flash
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memory interface is not externally exposed on eMMCs, it remains accessible through chip-
off analysis. It was observed that the authentication key of the target device was stored in
the same location as in the reference device and that the key data was duplicated at multi-
ple locations. Similar techniques allowed the successful extraction of RPMB authentica-
tion keys from eMMCs of other manufacturers used in various smartphones. Each model
stored the authentication key at a unique address, however also in plain text without any
read protection.

The acquisition of the RPMB authentication key enables attackers to compromise the
device through downgrade attacks. If the RPMB is used to prevent software downgrad-
ing, an attacker could manipulate the version information stored in the RPMB to a lower
value. This change would allow the attacker to downgrade the software to exploit known
vulnerabilities, thereby compromising the device. Thus, ensuring hardware-level security
of the authentication key is crucial for maintainig the integrity of RPMB in eMMCs.

According to the JEDEC Standard [73], the authentication key should be stored in a
“one time programmable” register that cannot be overwritten, erased, or read. However,
this is clearly not the case in real-world implementations. There are also commercially avail-
able products where the RPMB key can be deleted and the write counter can be cleared.
Based on these findings, it can be argued that the hardware-level implementation of the
RPMB is not fully compliant with the JEDEC standard, leaving potential vulnerabilities
that could be exploited by attackers to compromise the integrity of the device’s secure stor-
age.

5.4.2 Use of the RPMBWrite Counter

Authentication of a RPMBdata write request is performed by computing anHMACover
the message, incorporating the RPMB write counter. The RPMB write counter is a secu-
rity featuredesigned toprevent replay attacks. Therefore, even if theRPMBauthentication
key is compromised, authentication should fail if the write counter value does not match
the expected one.

Followingmodifications to theRPMBpartition, as discussed inSection5.3.3, theRPMB
write counter on the target device was incremented. It was anticipated that the QSEE
would detect tampering with the RPMB data due to this increment. However, QSEE rou-
tinely uses the write counter value supplied by the eMMC, and requests this value anew if
an RPMB write operation fails. Consequently, the RPMB write counter does not signif-
icantly contribute to the authentication scheme, enabling arbitrary modifications to the
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RPMB data once the authentication key is compromised. If the authentication had uti-
lized the write counter, the attack described in previous sections might have failed.

5.4.3 Hardware Authentication

In addition to not utilizing the write counter value for authentication, there appears to be
no hardware authentication implemented on the target device. Specifically, even if the tar-
get eMMCwas swapped with another eMMC of the same model, this modification went
undetected. Initially, a cloned eMCP of the target device was created by copying all physi-
cal partitions of the eMMC and matching the write counter, since the initial concern was
that thewrite counter needed tomatch the expected value. This swap alsowent undetected
by the SoC, providing additional avenues for exploitation. If the SoC had been designed
to verify the paired eMMCusing, for example, the Card Identification (CID) register, and
if the write counter had been checked during the authentication process, the attack would
not have succeeded.

5.5 Conclusion

This chapter explored the vulnerabilities of the RPMB from both software and hardware
perspectives on a specific Android devicemodel. It demonstrated that the integrity of data
stored in the RPMB, often perceived as immutable by users, relies heavily on the confiden-
tiality of a pre-shared symmetric key.

This research revealed some security flaws in the current RPMB implementation, both
insecure management of the RPMB authentication key on the eMMC and its handling
within software running on the target device. These vulnerabilities enable attackers to by-
pass RPMB authentication mechanisms and manipulate stored data, including disabling
anti-rollback protections. Such capabilities expand the potential attack surface, allowing
attackers to downgrade device software with the purpose of exploiting known vulnerabili-
ties to compromise the system.

Furthermore, this study highlights the importance of a comprehensive approach in dig-
ital forensics, emphasizing the need to integrate both hardware and software reverse engi-
neering to effectively challenge the security features of modern mobile devices. This holis-
tic approach is crucial for developing advanced forensic techniques that can adapt to the
increasing complexity of mobile device security.
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Bypassing Replay ProtectedMemory Block

Authentication Through Fault Injection

Chapter 5 examinedmethodologies for exploiting the use of theReplay ProtectedMemory
Block (RPMB) in embeddedMultiMediaCard (eMMC) by directly extracting the authen-
tication key through hardware-level modifications to the target device. This chapter inves-
tigates the resilience of theRPMB against fault injection attacks. The objective is to bypass
the RPMB authentication process using fault injection techniques, enabling the writing
of arbitrary data into the RPMBwithout knowledge of the authentication key.

6.1 Fault Injection

The term“fault injection” includes various techniquesdesigned to introduce faults or glitches
into a device, leading to unintended behaviors. These methods can be applied through
both software [110, 111] and hardware [112, 113, 114]. Common hardware techniques
include shorting the power supply (known as crowbar glitching or voltage fault injection),
applying electromagnetic pulses, illuminating with a laser beam (laser fault injection), and
manipulating the clock signal (clock glitching). Fault injection is particularly useful for by-
passing security checks in software that does not possess any (known) vulnerabilities. The
unintended behaviors, often referred to as fault primitives, can include skipping instruc-
tions or corrupting CPU register values, which may be exploited by attackers.
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6.2 Experiment Setup

6.2.1 Electromagnetic Fault Injection

The chosen method for the attack scenario in this research was electromagnetic fault injec-
tion, as it does not require additional hardwaremodifications and allows for localized fault
injection. Laser fault Injection, which requires thinning the chip package to expose inter-
nal transistors, was not considered due to its intrusive nature. Although the clock signal
could potentially be susceptible to clock glitching, it was assumed the external clock signal
is not directly connected to the internal core processor of an eMMC.

Given that an eMMC device is powered externally, the core voltage of the controller
(Vddi) and memory peripherals (Vcc) can be easily manipulated. Thus, applying voltage
glitching to these components was also deemed a feasible approach.

6.2.2 Target Selection

The goal of this research is to bypass the cryptographic authentication of the RPMB in an
eMMC. Prior to the actual attack, it is crucial to identify the location of the chip where it
is most susceptible to electromagnetic fault injection. For this purpose, Samsung eMMCs
were selected as target devices since the firmware of their device is accessible. Target devices
are detailed in Table 6.1.

Table 6.1: Target chip property details
Target number 1 2 3
Product name KLMAG2GE4A KLMBG2JETD KLM8G1WEMB

Manufacturer ID 0x15 0x15 0x15
eMMC version 4.41 5.1 5.0
Part name MAG2GA (1.2) BJTD4R (5.6) 8WMB3R (0.0)
Part no. 0xc23 (Cortex-M3) 0xc27 (Cortex-M7) 0xc23 (Cortex-M3)

Architecture 0x0F (ARMV7-M) 0x0F (ARMV7-M) 0x0F (ARMV7-M)
Variant 0x02 0x01 0x02
Revision 0x00 0x01 0x00

Controller name VHX0 VCT0 VPX0
MPU enabled No No No

VTOR 0x40000 0x60000000 0x40000

Previous research indicates that Samsung eMMCs typically incorporate a Cortex-Mmi-
crocontroller, and their firmware can be accessed via vendor-specific commands. In 2018,
Avraham demonstrated the ability to read and write to memory regions of an eMMC con-
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troller embedded within amobile device using these commands [115]. This capability was
further revealed by the release of proof-of-concept code publicly available on his repository
[116].

Having access to the firmware, while not essential for a successful fault injection attack,
provides a deeper understanding of the device’s operation, potentially enhancing the effi-
cacy of the attack.

6.2.3 Fault Injection Setup

Each target eMMCwasmountedona custombreakout adapter to eliminate theneed for re-
balling and resoldering. The adapter’s socketwas solderedonto a specially designedPrinted
Circuit Board (PCB), which was then fixed onto an XYZ table (Genmitsu 3018 PROver
V2) using a custom fixture to ensure precise positioning and repeatability. Electromag-
netic pulses were generated using a NewAE ChipSHOUTER (CW520) [117], equipped
with a one-millimeter clockwise-wound probe. The physical setup is shown in Figure 6.1.

Figure 6.1: Fault injection setup. The target chip is mounted to a custom PCB, using an adapter, while
applying an EM pulse using a ChipSHOUTER

The target eMMC was interfaced via programmable I/O (PIO) based state machines
running on a Raspberry Pi Pico [118], which also triggered the ChipSHOUTER, initi-
ating pulses at a fixed delay following the eMMC command execution. The whole fault
injection process was managed by software running on a Raspberry Pi 4 [91].

ATektronixDPO7354Coscilloscopewas used tomonitor the eMMCcommunication
and measure electromagnetic emissions from the internal core processor. These electro-
magnetic measurements were critical for determining the timing of eMMC operations,
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which will be outlined in Section 6.4.1.
While industry level fault injection equipment is available, cost effective off-the-shelf

products were used as much as possible for this research.

6.3 Characterizing the Target Against Fault Injection

Electromagnetic fault injection provides the capability for localized attacks. The initial
task involved identifying the most vulnerable locations on the target eMMCs. To aid this
localization process, a fault observer program was developed and deployed on the target
devices, following the procedures outlined in the subsequent sections.

6.3.1 Device Identification

The mmc-utils program [108] was extended to include the vendor-specific commands
discussed in Section 6.2.2. It was assumed that the internal controller operated based on
the ARM architecture. Thus, the extended mmc-utils was utilized to read the System
Control Block (SCB) at offset 0xE000ED00, and the Memory Protection Unit (MPU)
configuration at offset 0xE000ED90. The information acquired from the SCB andMPU
is detailed in Table 6.1.

TheMPU,which defines thememory access permission, was found to be disabled for all
target eMMC units. According to the ARMv7-M Architecture Reference Manual [119],
when theMPU is disabled, the default systemmemorymap is utilized. Bydefault, theCode,
SRAM, and RAM memory segments are mapped as readable, writable, and executable.
The vector table offset register (VTOR) points to the main vector table of the device, with
the second entry in this table holding the address of the reset handler, which was used as
the entry point for arbitrary code.

6.3.2 Arbitrary Code Execution

The code section also holds the vector table for standard eMMC commands and can there-
fore be overwritten using vendor-specific commands. For Target 2, this table was located
in the RAM segment, but the same principles apply. To gain arbitrary code execution, the
payloadwas first written to an unusedmemory region, and the entry forCMD8 (SEND_E
XT_CSD) in the vector table was updated with the address of the custom routine.

The fault observer implementation was directly written in assembly. Listing 1 shows
the decompilation of this code for readability. It consists of a nested for loop that incre-
ments an unsigned integer value for every iteration. The total number of iterations and the

80



6

incremented value are written to the beginning of the extendedCSD register, which is cur-
rently unused according to the current JEDEC standard [73]. Finally, the original CMD8
routine is executed, returning the contents of the extended CSD register. By checking the
stored values, it is possible to determine whether the controller was affected by the EM
pulse. This approach worked for all targets.

1 void fault_observer(void) {
2 uint32_t total_iterations;
3 uint32_t value;
4 uint32_t j;
5 uint32_t i;
6 extcsd *ext_csd;
7

8 ext_csd = PTR_EXT_CSD;
9 total_iterations = 0;
10 value = 0;
11 j = 0;
12 do {
13 j = j + 1;
14 i = 0;
15 do {
16 value = value + 7;
17 i = i + 1;
18 } while ((int)i < 62500);
19 total_iterations = total_iterations + i;
20 } while ((int)j < 4);
21 ext_csd->total_iterations = total_iterations;
22 ext_csd->value = value;
23 (*(code *)CMD8)();
24 return;
25 }

Listing 1: Fault observer implementation
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6.3.3 Profiling

Electromagnetic pulses were introduced while the fault observer code was running on the
target, and the operation was repeated at different positions on the chip to determine
which areas were the most affected. Based on the return values of the fault observer, each
attempt was categorized asNormal, Crash, orGlitch. If the fault observer returned the ex-
pected value, the result was categorized asNormal. If the response from the target was all
0x00 or 0xFF, the result was categorized as Crash, as the target chip could no longer oper-
ate normally without a hard reset. If the result from the fault observer differed from the
expected value but the target chip still operated normally, it was categorized as aGlitch.

The probe was positioned using a 1mm by 1mm grid overlaid on the target chip. A
glitch attempt was performed at each position for 25 iterations. An electromagnetic pulse
with a strength of 200V and a duration of 100ns was applied for profiling. A heatmap was
created for each categorized result (Figure 6.2).

As shown in Figure 6.2, it is clear that Target 1 is susceptible to the glitching attack at
multiple locations. Whereas Target 2 and 3 can be only glitched or crashed if the electro-
magnetic pulse is sent at the specific location. Nevertheless, through profiling, it is clear
that a fault can be injected using electromagnetic pulses, to affect the code running on the
eMMCcontroller for each target. The heatmapwas then comparedwith the internal struc-
ture of each target. UsingX-ray radiographic inspection, the location of the flash controller
in each target chip was identified. Figure 6.3 shows the X-ray image of each target. Based
on the bonding wires of the internal controller, the estimated location of the controller is
highlighted with a rectangular annotation in the X-ray image.

For Target 1, the location of the “hot spot,” where the fault observer can be successfully
glitched, matches the location of the controller (Figure 6.2a and 6.3a). Based on this align-
ment, it is assumed that fault injection is possible if a electromagnetic pulse is sent at the
location of the flash memory controller. On the other hand, the hot spot of Target 2 does
not match the location of the controller (Figure 6.2b and 6.3b). Rather, this target is more
succeptible for Crashes andGlitcheswhen the electromagnetic pulse is sent directly on top
of one of the bonding wires. To the best of available knowledge, this bonding wire is con-
nected to the supply voltage line. It is also worth noting that the controller of Target 2
is located beneath the flash memory diesesulting in a greater distance between the electro-
magnetic probe and the controller compared toTarget 1 or Target 3. The fault observation
procedure was repeated with higher-voltage EM pulses; however, the results remained un-
changed. The hot spot of Target 3 aligns with the location of the controller, though the
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Figure 6.2: Profiling results for each chip using the fault observer. The lighter the color, the more suscep-
tible the chip is for the categorized result at that location.
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(b) Target 2
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Figure 6.3: X-ray inspection of target chips
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Table 6.2: Glitching parameters for each target
Target 1 2 3

X position (mm) 154 159.8 159.8
Y position (mm) -62.5 -58.1 -58.5
Z position (mm) -25.7 -25.7 -25.7
Pulse Voltage (V) 200 200 200
Pulse Duration (ns) 100 100 100

glitching rate is significantly lower (less than 10 %) compared to Target 1 (approximately
30 %) at the optimal location.

Subsequently, the optimal glitching parameters for each target chip were determined.
Different voltages and lengths of theEMpulsewere tried at themost susceptible locationof
each chip (Location x=6, y=4 for Target 1, Location x=10, y=0 for Target 2, and Location
x=10, y=1 for Target 3). Pulse voltages and length were selected between 150V and 250V,
andbetween40ns and1000ns, respectively. These parameterswere randomly chosenwhile
repeating the operation 1500 times. It was observed that Targets 2 and 3 were more prone
to crashing when the voltage exceeded 200V. However, the pulse duration did not appear
to impact the outcome, as the results were uniformly distributed regardless of pulse length.
Consequently, the glitching parameters were selected as shown in Table 6.2. The X, Y, Z
position values are based on the setup of the XYZ table.

6.3.4 Firmware Reverse Engineering

Togain adeeperunderstandingof theRPMBauthentication implementation, thefirmware
of the target eMMCwas reverse engineered. All availablememory areas, including the boot
ROMandmainROMcode, were dumped from the chip using vendor-specific commands.
The firmware utilizes a vector table located in SRAM, or the RAM segment in the case of
Target 2, for all standard eMMC commands. The function responsible for implementing
all RPMB functionalitywas identified and further analyzed to understand howRPMBkey
authentication could be circumvented using fault injection.

Listing 2 presents the decompiler output for the routine that verifies the HMAC of an
RPMBwrite request.
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1 uint32_t rpmb_check_hmac(void *hmac,uint32_t length) {
2 uint32_t i = 0;
3

4 if (length + 3 >> 2 != 0) {
5 do {
6 if (*(int *)((int)hmac + i * 4) != *(int *)(CORRECT_HMAC +

i * 4 + 0x60)) {↪→

7 return 0;
8 }
9 i = i + 1;
10 } while (i < length + 3 >> 2);
11 }
12 return 1;
13 }

Listing 2: Routine that checks the RPMBHMAC

The routine checks the HMAC sent in the RPMBwrite request data frame against the
pre-calculated correct HMAC, four bytes at a time. It returns 1 if theHMAC is valid; oth-
erwise, it returns 0. By analyzing the structure of this routine, the following fault injection
possibilities were identified:

1. If the length argument is set to 0, the check is skipped entirely.

2. If the register r0 is set to any non-zero value, the ROM assumes theHMAC is valid.

3. If the call to rpmb_check_hmac is skipped entirely, the verification will succeed, as
r0 contains a pointer to the provided HMAC (a non-zero value).

6.4 Glitching Replay Protected Memory Block Authentication

Based on the profiling results of electromagnetic fault injection detailed in Section 6.3.3
and the analysis of the RPMB implementation shown in Section 6.3.4, it was hypothe-
sized that it would be possible to bypass the RPMBHMAC authentication routine using
electromagnetic fault injection. Consequently, the setup described in Section 6.2.3 was
modified to attack the RPMB authentication.
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6.4.1 Identifying the Attack Timing

When writing data to the RPMB, a JEDEC-defined data frame is sent to the target chip.
The data frame is 512 bytes long and should include the data to be written, the write
counter, address, block count, request message, and an HMAC calculated over this data
(see Section 5.1 of Chapter 5). This data frame is sent to the target eMMC following
CMD23 (SET_BLOCK_COUNT), which sets the block count and reliable write flag,
andCMD25 (WRITE_MULTIPLE_BLOCK),which initiates theblockwrite to theRPMB.
The command sequence for the RPMBwrite request is shown in Figure 6.4a. Commands
and data in white boxes are sent from the host to the target, while orange boxes indicate
responses from the target. RPMB authentication is likely performed during the time indi-
cated by the red box, making this timing window the optimal target for fault injection.

CMD23&25

Write data 
+ HMAC

Result
CRC status + 
Busy signal

RPMB Result 
Request

CMD

DAT0

CMD23&25 CMD23&18

(a) RPMB write command sequence

EM

DAT0

CLK

Write Data 
Complete

CRC OK 
(0b010)

Busy

(b)Waveforms when data with wrong HMAC were sent to the target. The timing matches the timing window
shown in red in Figure 6.4a

Figure 6.4: RPMBwrite command scheme and captured EM emission
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To precisely identify the attack timing window, the electromagnetic radiation emitted
by the controller was measured when the RPMB data frame was sent to the target. Figure
6.4b shows the captured waveform. The captured timing aligns with the timing window
indicated by the red box in Figure 6.4a. TheDAT0 line is shown inmagenta, the CLK line
in green, and the electromagnetic emission in blue (shown as EM in the figure.) Since sig-
nificant electromagnetic radiation is observed during and after the data is sent to the target,
it is assumed that the controller continues performing internal operations throughout this
period. The CRC status of the transmitted data (positive = ”010”) is sent on the DAT0
line from the controller, synchronizedwith theCLK signal, as defined by the JEDEC Stan-
dard. This is followedby theDAT0 line beingpulled low, indicating that the target device is
busy with internal computations. Even after DAT0 returns to high, the controller appears
to remain active, as electromagnetic radiation persists for some time. Since no other com-
mands are issued to the target, it was inferred that HMAC verification is most likely per-
formed during this period, with the observed electromagnetic emissions originating from
the controller processing the RPMB data and performing HMAC computation.

6.4.2 Glitching Setup

Prior to the fault injection attack campaign, the RPMB of each target was programmed
with an arbitrary key. Then the first block of the RPMB (256 bytes) was programmed
with random values. The Raspberry Pi Pico in the setup described in Section 6.2.3 was
reprogrammed to communicate with the RPMB on the target eMMC. Then, software
running onRaspberry Pi is modified to triger the electromagnetic pulse generation during
the timing window identified above. The 200V electromagnetic pulse with a length of
100ns was injected at 10ns granularity during the target timing window. The trigger signal
was generated when the last bit of the data packet was sent.

The host system can verify whether the authenticated data write request was successful
by reading the result register. This can be done by sending an RPMB data frame with a
result register read request, followed by CMD23 and CMD25, and subsequently reading
the result by sendingCMD23 andCMD18 (READ_MULTIPLE_BLOCK), as shown in
Figure 6.4a. Table 6.3 lists the result register values defined by JEDEC [73]. While more
values are defined, only the relevant ones for this setup are included in Table 6.3.

The returned register values were used to determine if the fault was successfully injected
into the RPMB authentication procedure. If the returned value was 0x02, the target was
determined to be responding normally. Since the authenticated data write request was
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Table 6.3: Partial list of RPMB operation result register values
Value Results
0x0000 Operation OK
0x0001 General failure (Multiple errors have occurred)
0x0002 Authentication failure (HMACmismatch)
0x0003 Counter failure
0x0004 Address failure

intentionally sent with an incorrect HMAC value, this is the expected result. If the target
responded correctly with the register value 0x00, an incremented write counter, and the
correct HMAC then the attack has successfully skipped the authentication procedure. If
any other value was returned on the result register value, then it was determined that an
error occurred during the RPMB authentication procedure. If all of the responses were
0x00 or 0xFF, then the target was presumed to have crashed, since a hard reset is required
to bring the chip back to a normal working state.

6.4.3 Results

The glitching campaign targetingRPMBauthenticationwas conducted exclusively onTar-
gets 1 and 3. During the profiling campaign, Target 2 became unresponsive, rendering it
unavailable for further analysis. Figure 6.5 shows the returned result register values over
time. The x-axis represents the timing of the electromagnetic pulse injection, while the y-
axis displays the actual returned value of the result register. The timing is measured as the
delay fromwhen the last bit of write data was sent to the target. Responses of 0x0000 and
0xFFFF primarily indicate a target crash, where the entire response data frame was filled
with either 0x0000 or 0xFFFF.

On Target 1, the register value 0x0001 (General Failure) was most frequently returned
when the electromagnetic pulse was introduced at the early stage of the RPMB operation.
Following this, register value 0x0002 (HMACmismatch) was typically returned if the tar-
get did not crash (returned data frame being filled with 0x0000). Register value 0x0003
(Counter Failure) was returned when the electromagnetic pulse was applied at the begin-
ning of the RPMB authentication routine. It is presumed that the write counter check is
performed before the HMAC check, and the fault was injected during this routine, result-
ing in a failure of the write counter check. Similar results were observed on Target 3, with
the exception that the crashed state, where the data framewas filled with 0xFFFF, occurred
more frequently.
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Figure 6.5: Returned result register value after RPMB authentication glitching

Note that a response 0x0000 is returned in a response data packet if the RPMB authen-
tication was successful, meaning that the target was successfully glitched. Those responses
are shown as red dots in Figure 6.5. Based on the results where RPMB authentication
was successfully glitched, the critical timing window for fault injection was identified as
between 117.72μs and 118.30μs for Target 1, and between 112.30μs and 112.50μs for Tar-
get 3. In both cases, these timings occurred near the end of the busy signal indicated on
theDAT0 line. Following successful glitching, the write counter value was incremented by
one on both targets, indicating that the controller acted as though the correct HMAChad
been received and proceeded with writing the data. Post-verification of the RPMB values
confirmed that the sent data was successfully stored. Thus, it was concluded that RPMB
authentication can be bypassed through electromagnetic fault injection when applied at
the correct timing.
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6.4.4 Integrity of Non-Volatile Data

While it has been demonstrated that RPMB authentication can be bypassed through elec-
tromagnetic fault injection, it is equally important to ensure that the other data stored on
the target eMMC remains unaffected. With the critical timing for skipping the RPMB
authentication check identified, the experiment was repeated using a new chip. Before the
experiment, arbitrary data was written to the main partition of the target eMMC. Prior to
initiating the glitching campaign, all physical datawas dumped andhashedusing SHA-256.
The data was imaged using the Unix-based dd program.

After completing the non-volatile data extraction, the target chip was mounted on the
glitching setup, and the electromagnetic pulse was injected exclusively at the critical timing
of the RPMB authentication, as identified in the previous section. For both Target 1 and
Target 3, bypassing the RPMB authentication was successful in fewer than 10 attempts
(with a success rate of approximately 30% for Target 1 and 10% for Target 3). After suc-
cessfully bypassing the RPMB authentication, the user data area was extracted again. The
SHA-256 hash of the extracted data matched the value computed before the glitching at-
tack. Additionally, the RPMB data was overwritten only at the specified block address,
leaving the remaining block data unchanged. Thus, it was concluded that electromagnetic
fault injection attacks on RPMB authentication can be performed while preserving the
integrity of the stored data, provided that the pulses are applied using predetermined pa-
rameters and timing.

However, it must be noted that repeatedly applying electromagnetic pulses to the same
device increases the likelihood of data corruption in the user data area of the eMMC. The
glitching campaign was repeated 100 additional times using the same setup. As a result,
multiple data corruptions were observed in the user data area of both targets, although the
RPMB area appeared unaffected. These corruptions were easily reverted by restoring the
backup. This observation underscores the importance of creating a data backup before-
hand and verifying the integrity of the data after a successful glitching attempt.

6.5 Discussions

6.5.1 Real World Applications

To the best of the author’s knowledge, the use of RPMB has seen limited application in
smartphones, such as storing an anti-rollback counter (as discussed in Chapter 5). How-
ever, this type of storage appears to be more widely adopted in the automotive industry.
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For instance, U-Boot, a popular bootloader used in embedded devices, stores anti-rollback
counters and the bootloader lock state in the RPMB when Android Verified Boot (AVB)
is configured to use OP-TEE [102].

According to NXP, their I.MX family of processors is used by most large car manufac-
turers [120]. NXP also supports Android Automotive, that uses Trusty as the operating
system of choice to run in the Trusted Execution Environment (TEE) [121]. According
to the i.MX Android Security User’s Guide from NXP [122], the RPMB is used to store
anti-rollback counters, bootloader lock state, and AVB public key, which is used for veri-
fying integrity of system images. The RPMB key itself is encrypted and decrypted in the
TEE by Trusty. The Digi ConnectCore 8X system-on-module (SOM), which is designed
around the NXP I.MX 8X processor and uses eMMC storage, also stores the AVB public
key in the RPMB [101].

Therefore, it appears that the RPMB is a critical component in the secure boot imple-
mentation of a wide range of automotive products. Compromising the RPMB would
allow an attacker to rollback to potentially vulnerable software versions, unlock the boot-
loader, or re-sign system images, ultimately granting the attacker root privileges in the An-
droid operating system.

While an eMMCchip provides tamper-resistant storage through theRPMB, nomitiga-
tions against fault injection were observed during the experiments. Additionally, the total
cost of recreating the fault injection setup is less thanUSD$7,000,making electromagnetic
fault injection accessible to well-resourced attackers.

6.5.2 Mitigations

Asdiscussed inSection6.3, publicly knownvendor-specific commandswereused to achieve
code execution on all devices, and run the fault observer routine. This fact already breaks
the security of the RPMB, since the firmware can easily be patched through software.

Applying electromagnetic fault injection on an eMMC chip requires physical access to
the device. Depending on the threat model being used, this might be a valid concern. One
way to increase the difficulty of successful fault injection attacks is to implement mitiga-
tions in software as described by van Woudenberg and O’Flynn [123] (e.g. double check-
ing critical data, using non-trivial constants). As mentioned in Section 6.3.4, the imple-
mented HMAC validation routine shown in Listing 2 only fails when returning 0. This
requirement is trivial to achieve since the CPU register holding the return value (r0) holds
a pointer to the HMAC, and thus is non-zero before the function is called. Requiring a
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return value with a largeHamming distance (i.e. 0xA5C3B4D2) significantly increases the
attack complexity. A large number of bit flips is needed to end up with the correct return
value.

Validation of the HMAC is critical; if circumvented, the integrity of the RPMB is fully
compromised. Therefore, theHMAC should be checkedmultiple times. Preferably, a ran-
dom delay should be added between these checks, requiring the attacker to insert multiple
glitches with a non-constant delay between them.

6.6 Conclusion

This chapter demonstrated that it is possible to circumvent the RPMB authentication
scheme and write arbitrary data by applying electromagnetic fault injection on eMMC
chips. TheRPMB functionality in non-volatile storage devices is often relied upon to store
critical data thatmust remain immutable to theuser. However, the ability to bypassRPMB
authentication andmanipulate its data—without knowledge of the authenticationkey and
withminimal hardwaremodification—presents a valuable opportunity for digital forensic
investigators to compromise the target device. This approach could allow them to manip-
ulate data critical to the device’s security, such as anti-rollback protection, bootloader lock
state, and signature verification.

The implications of this work suggest that while RPMB is widely regarded as a secure
element in embedded devices, it is vulnerable to fault injection attacks. This vulnerability
provides forensic investigators with a possible entry point for bypassing protections that
would otherwise prevent access to critical system areas. By exploiting this flaw, investigators
could unlock bootloaders or bypass secure boot processes, enabling them to run arbitrary
code on compromised devices.

Future work could explore applying this method to consumer devices and demonstrate
a complete attack scenario where the securitymechanisms relying onRPMB are fully com-
promised. Such an attack could allow forensic investigators or attackers to unlock boot-
loaders and take control of the device, further highlighting the need for stronger fault in-
jection countermeasures to protect the integrity of stored data.
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Conclusion

This thesis has explored the security features of flash memory-based storage devices from
both hardware and software perspectives, with a particular focus on their implementation
in modern mobile devices. As discussed in Chapter 2, the advanced security layers in con-
temporary smartphones mean that traditional data extraction methods, such as chip-off
techniques, often fail to yield meaningful results. With the semiconductor industry’s ag-
gressive technological advancements, effectivememory-based data extraction now requires
an in-depth understanding of memory technologies’ hardware architecture and their prac-
tical applications in mobile devices.

7.1 Addressing the Research Questions

This research addressed the primary research question, “What kind of security features
in flashmemory can be exploited to perform effective data extraction frommodern
mobile devices?” with the following insights:

• Current Challenges in Forensic Data Extraction from Mobile Devices:
As highlighted throughout this thesis, particularly in Chapter 2, the default encryp-
tion of data onmobile devices means that merely extracting physical data from flash
memory often does not provide accessible information. Multiple layers of security
authentication protect the necessary decryption keys required to decrypt the data
stored in flash memory. Consequently, forensic investigators must undertake ex-
tensive reverse-engineering to find possible vulnerabilities that allow arbitrary code
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execution. This reverse engineering often requires a dual approach—both hardware
and software—tailored to each model and software version.

• Data Storage and Extraction Methods in Flash Memory:
Chapter 3 demonstrated that data stored in NAND flash memory is inherently un-
stable due to the technology’s nature, causing bit errors. Additionally, traditional
data extractionmethod, where hot-air is applied to the flashmemory chip, can cause
critical damage to the stored data. However, vendor-specific commands, like the
read-retry command, can mitigate these errors and enhance data reliability. For
eMMC, rawflashmemory data extractionnecessitates hardware reverse-engineering
to identify non-standard access pads. Accessing the flashmemory allows recovery of
deleted data, as detailed in Chapter 4.

• Security Features in Flash Memory used in Modern Mobile Devices:
Chapters 4 and 5 illustrated the advancement of flash memory technology, where
flashmemory is to be integrated into single components alongwith their controllers.
The eMMC technology, which is most popularly used in modern mobile devices,
was the focus of this thesis. One of its security features, the RPMB block, is com-
monly used in modern storage devices to secure data against unauthorized manip-
ulation. Without proper authentication, data within this block remains tamper-
resistant. The RPMB often stores anti-rollback values or hashes necessary for data
decryption. Additionally, eMMCs implement secure features such as “Secure Erase”
or “Sanitize” to securely delete stored data. Those features are commonly used in
modern mobile devices.

• Exploiting the Flash Memory Security Features:
Chapter 4, 5, and 6 demonstrated that above mentioned security features can be ex-
ploited to aid effectivemobile forensics. By investigating inside themodernmemory
devices both through software and hardware, those features can be compromised.
First, security erase features of eMMCs can be exploited by accessing the internal
flash memory on some models, leaving more room for forensic investigators to re-
cover deleted data. Additionally, the implementation of RPMB onmodern mobile
devices can be exploited through structural reverse-engineering or fault injection
techniques, giving vulnerabilities to be exploited. These exploits require extensive
reverse engineering and sophisticated techniques to execute successfully.

This thesis also highlighted the fact that both hardware and software-based approaches
are critical for performing effective forensic data recovery from modern mobile devices.
Keeping upwith the current security implementations on these devices requires a dynamic
and adaptable forensic methodology. This ongoing challenge underscores the importance
of continuous research and development in the field of mobile forensics.
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7.2 Future Research

This research focused on NAND flash memory and eMMCs. However, emerging tech-
nologies such as UFS and NVMe are becoming the preferred storage solutions for the cur-
rent generation of smartphones, making them an interesting subject for future research.
These devices also incorporate RPMB implementations. Compromising the integrity of
RPMB data could allow attackers to further modify the mobile devices, enabling them to
take control of the target system. Expanding non-invasive attacks such as fault injection to
consumer devices represents a promising avenue for further exploration.
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