

GEO Grid Grid-based e-infrastructure for geosciences

Data Intensive Research Project(s) at ITRI/AIST

Jason H. Haga Isao Kojima

National Institute of Advanced Science and Technology(AIST), JAPAN

Data Integration Question

(same as last year)

What knowledge can be obtained by integrating following data?

1. Geological Map

- Geological Survey of Japan is a part of AIST
 - sedimentary rocks,
 - volcano rocks,
 - grantic rocks etc.

2. 3D Elevation Model

- Created by our ASTER Satellite
 - Produce 3D-model by stereo-matching

3. Real Time Rain Sensors

Provided by JMA(japan meteorological agency)

Answer: Hazard Map for Landslide

(One typical application of GEO Grid)

Key R&D Technologies

- 1. Distributed Database Integration (Linked Data/Heterogeneous DB etc.)
- 2. Data Mining & Simulation on the Cloud (Neural-Net, Machine Learning)
- 3. Multi-Screen Visualization (Tiled Wall Software)

Background on AIST

- National Institute of <u>A</u>dvanced <u>I</u>ndustrial <u>S</u>cience and <u>T</u>echnology, Japan
 - Mission: Contribute to society through continuous advancement in technologies and support to Japanese industries
 - Supported by METI (Ministry of Economy, Trade and Industry)
- Established in 2001
 - Merging **15** different research institutes
 - Oldest is Geological Survey of Japan (est. 1882)
 - Set/maintain the kilogram calibration standard of Japan
- AIST ranked 7th in "Top 20 Japanese research institutions for all field", Thomson Reuters, 2014

GEO Grid Grid-based e-infrastructure for geosciences

Researchers (foreign nationals) Administrative employees (foreign nationals) Total number of employees: 2,933 (97)

- Postdoctoral researchers 200
- Technical staff ························ 1.441

(As of April 1, 2015)

Number of researchers accepted through industry/academia/government partnerships Companies 1.774 (foreign nationals :426)

(Total number of researchers accepted in FY 2013)

Location of AIST

- Tsukuba (science) City
 - Government planned city
 - Est. in 1962
 - 1 university, 2 colleges
 - About 30 governmental research institutes including JAXA, KEK, NIMS
 - About 30~40 company labs
 - 60km Northeast from Central Tokyo
 - 45min with Tsukuba Express (TX)

Geographical Survey Institute Acerial Look of Tsukuba(in part) University of Tsukuba

Tsukuba Station

Geological Survey of Japan (GSJ) of AIST

Walk

JAXA Japan Aerospace eXploration Agency

Sakura-kan Guest House Information Technology Research (ITRI) of AIST

AIST

Research at AIST

7 major research areas

Good for Cross-Domain Research

Cross-Domain/ Interdisciplinary R&Ds

GeoScience + IT Bioscience + IT Mechanics + IT Etc.

Geoscience + IT

GeoGrid: An Example of Data Intensive Research Projects at ITRI

What is GEO Grid?

GEO = Geospatial

Grid = Grid (cloud) Computing

http://www.geogrid.org

e-Science infrastructure on heterogeneous data archives

Cross-Domain (joint) project from 2004

Geology/Environment Units in AIST.

Core archive contents: Our Satellite Sensor Data

- ASTER satellite images >= 200TB(2000,000 scenes, y2000->) •
- Now extending to manage (Petabyte-Scale) PALSAR, PRISM, Landsat8 etc.

– Core technologies: Grid Based => Parallel/Distributed R&D

- Distributed file system: Gfarm (started at AIST, Now at Tsukuba-U)
- Database Integration: OGSA-DAI@Uk /Distributed SPARQL ٠
- Tsukuba-GAMA: Integrated Credential(Authentication) Management(some codes are included in MyProxy)

Major Technical Achievements of GEO Grid in 10 years

- Petabyte-Class Large Scale Data Archive & Analysis
 - Gfarm
- Single sign-on system using Grid Security

 Tsukuba-GAMA
- Heterogeneous Metadata Management based on OGC Standard

 AIST-CSW
- Service-based Distributed Database Access
 OGSA-DAI(Web Services)

Data Archives

- ASTER sensor on NASA Terra satellite (2000~)
 - Resolution(Mid-range):15m(VNIR),30m(SWIR),90m(TIR)/px
 - 60km wide
 - 50~60GB daily Level 0 data transfer from NASA to JAPAN
 - 16 day observation cycle
 - Good for detecting long range change(= large computation)
 - 2 cameras with different angles
 - Can create DEM (Digital Elevation Model) by stereo matching
- Landsat-8 (by USGS)
 - Latest earth observation satellite launched 2013
 - 15m/Pan 30m/Color
 - 16 day observation cycle for the same area
 - Free and Open!
- AIST set up the ground station for Landsat-8 (with Tokai-U)
 - Receives the daily data directly from the satellite
 - Can publish the data to the Internet in semi real-time
 - 2 hrs in AIST by our high performance computing (1 day in USGS)

DEM of Pakistan Landslide 2005

3.11 science data examples produced by the GEO Grid

Grid-bas

GEO Grid archive/cluster is also damaged by 3.11 earthquake

Ground move

Flood simulation

ASTER images

with 3D DEM

We evacuated our environment using cloud technology and continued to process data in collaboration with OCC/ SDSC/NCHC etc.

Public Service http://landsat8.geogrid.org

Latest/Historical Data can be Downloaded and Viewed

User Contributions Like "I found interesting things!" by Facebook

Constellation

- ASTER = 16 days cycle
- Landsat-8 = 16 days cycle
- ASTER+Landsat-8 = 8 days cycle (same orbits)
- **Target: Daily change detection**

Example: Skybox (which is acquired by Google) has a plan to launch 20 satellites
We are investigating to do the same thing with existing (and new) satellites

Analysis

Workflow engine: Lavatube Machine Learning System: Hivemall

GEO Grid Grid-based e-infrastructure for geosciences

Our yet another Workflow Engine: Lavatube for spacio-temporal data and image/movie processing

- Hivemall: Scalable Machine Learning Library for Apache Hive
- A collection of machine learning algorithms as Hive UDFs/UDTFs
 - Classification & Regression
 - Recommendation
 - k-Nearest Neighbor Search

- An open-source project on Github
 - Licensed under LGPL
 - github.com/myui/hivemall (bit.ly/hivemall)

Hadoop Summit 2014, San Jose

Application

Radiation Monitoring Database for Fukushima

Project Overview

GEO Grid

Radiation Monitoring Data is important to:

Understand what happened at the accident in the past Help the decision making for the future

National Project to continuously Monitor/Construct/Publish Radiation Monitoring Database of Fukushima Area

GEO Grid Grid-based e-infrastructure for geosciences

Example Data Integration Application using OGC specs

AIST CS-W Client ×	Google ×		
 → C Sfirad.geogrid.org 	map_with_chart/		☆ 🗹 🗮
GE Function fering: 38)Monitor Posts assurement value range: Value range (uSv/h) 19 " More than 19.0 9.5 " 19 3.6 " 9.5 1.9 " 3.8 1 " 1.9 0.5 " 1		N37° 39'	GE Search Date: 2013-01-01 → 2013-03-30 Snow2013-02-01 @Terrain @Roads @Borders @Buildings @Grid Status @BBox Search (\$38) 浪江町小内多目的集会所 [14093][37.467] ×
02 ° 05 0.1 ° 02 Less than 0.1 ° 0.1 se rate(uSv/h): Dose rate (µSv/h): Dose rate (µSv/h) 19.0 < measurement value ≤ 19.0 3.8 < measurement value ≤ 19.0 3.8 < measurement value ≤ 19.0 1.0 < measurement value ≤ 1.9 0.5 < measurement value ≤ 1.9 0.5 < measurement value ≤ 1.0 0.2 < measurement value ≤ 1.0 0.1 < measurement value ≤ 0.2 0.1 < measurement value < 0.2 < measuremen	3° E140° 39' E140° 45' E140° 5'	N37° 33' E140° 57' E141° 0	
Area with no survey results available Snowfall (March 4 to March 11, 2013) Addet to Miyagi Prefecture and Fukushima Prefecture *JASMES (JAXA) data used		N37° 27°	2013/2 2013/3 (S38) 田村市地見城多目的研修集会施設 [140.824],[37,417] ×
		0.1 N37° 21° 0.1 0.1	

Combine SOS (Sensor Observation Service) with other WMS (Web Map Service) data source (Weather)

Human exposure to natural background radiation, 0.27uSv/h

Jan 1, 2013 The dose rate was relatively high

> Jan 16, 2013 The dose rate was relatively low when there was heavy snow

Simple overlay can be useful

Directions

Social, Mobile & Crowdsourcing

Data Integration Issue: Administrative & Non-Administrative Data

- <u>Administrative Data (Current GEO Grid Data)</u>
 - Governmental & official data
 - Limited amount with controlled quality
- Non-Administrative Data
 - NPO, Social media, crowdsourcing (Twitter, etc.)
 - Large amount, variable quality

Application Examples

 Cyber-Physical Data Cloud: An Infrastructure for Interconnecting Heterogeneous Sensor Data (WTP2012 Demonstration)

Situation creation on the basis of intersection area of outbreaks between tweets and natural phenomena

Crowdsourcing and Notifications Joint Research with Taiwan ITRI

Linked Open Data

Federated SPARQL with "Best-Effort" Query Processing

Linked Open Data (LOD)

Try to create a huge linked knowledge cloud

- The data is written with RDF (Resource Description Framework)
 - The Standard for the Semantic web community
- Highly distributed and rapidly increasing
 - More than 300 sites, billion~trillion triples
- Cross-Domain
 - GEO, BIO, Government, Media, etc
 - Many governmental data is going to be published as LOD.
- Issues
 - Distributed SPARQL processing may be slow, but a centralized data service lacks freshness
 - Heterogeneity with SPARQL Endpoints, plain RDF Texts

Our Approach Hybrid Adaptive Query Processing Based on the **freshness**, **coverage** and the **response time**

Adaptive Query optimization

Pre-defined Query Processing Schedule

Network delays, Too many results Site troubles, etc...

Modified Processing Adaptively

dbo: <http://dbpedia.org/ontology/>
dbp: <http://dbpedia.org/property/>
owl: <http://www.w3.org/2002/07/owl#>

```
Query 1 (Result size = 150):
select * where {
 ?x dbp:reference ?ref .
                             777,679
 ?x rdf:comment ?comment .
                             10,000
 ?x skos:subject ?subj .
                             9971
 ?x foaf:page ?page .
                             10,000
 ?x rdf:type ?type .
                             800,000
 FILTER ( regex(str(?subj), "building") )
Ouerv 2 (Result size = 8):
select * where {
 ?x dbp:reference ?ref .
                            777,679
 ?x rdf:comment ?comment .
                           10,000
 ?x skos:subject ?subj .
                            9971
 ?x foaf:page ?page .
                            10,000
 ?x rdf:type dbo:book
                            3105
Query 3 (Result size = 8):
select * where {
 ?x dbp:reference ?ref .
                            777,679
                           10,000
 ?x rdf:comment ?comment .
 ?x skos:subject ?subj .
                            9971
 ?x foaf:page ?page .
                            10,000
```

3105

(DBP) 126,737

?x rdf:type dbo:book

?x dbo:releaseDate ?date

rdf: <http://www.w3.org/2000/01/rdf-schema#>
skos: <http://www.w3.org/2004/02/skos/core#>
foaf: <http://xmlns.com/foaf/0.1/>

Achieve good performance around 10 distributed SPARQL endpoints (still small for 300 ;-<)

BioScience + IT

BIO-CAD/LEAD Hydra: Molecular Visualization

High Performance Genomics Assembly

- <u>Next Generation Sequencers</u>
 Huge set of short reads are obtained
 - 1 read: ATGC(base)100(50basex2)
 - Total : 100million reads just for 1 run

- <u>Hybrid Assembly Workflow</u>
 - MPI parallelized (SAET, ASiD)
 - Improve the algorithms (Velvet)
 - To achieve scalability and performance enhancements

Hydra Molecular Visualization

Create a more device agnostic tool
 Visualization of multiple protein-ligand interactions

Mechanics + IT

Media-related R&D

Media-Related R&D

- IT behind the robot
 - Computer Singing Systems
 - VocaListener
 - VocaWatcher

Active Music-Listening
 Web Service
 – Songrium

- AIST has many interdisciplinary data-oriented R&D projects
 - Geospatial
 - Linked Data
 - Bioinformatics
 - Multimedia (Music/Songs)
- Looking forward to the OSDC students contribution
- AIST YouTube: <u>https://www.youtube.com/user/aistchannel</u>

Acknowledgements

Isao Kojima Kyoungsook Kim Steven Lynden Hirotaka Ogawa Tsutomu Ikegami Yuan Zhao

